3 resultados para Rotatory Inertia

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper derives a theoretical framework for consideration of both the technologically driven dimensions of mobile payment solutions, and the associated value proposition for customers. Banks promote traditional payment instruments whose value proposition is the management of risk for both consumers and merchants. These instruments are centralised, costly and lack decision support functionality. The ubiquity of the mobile phone has provided a decentralised platform for managing payment processes in a new way, but the value proposition for customers has yet to be elaborated clearly. This inertia has stalled the design of sustainable revenue models for a mobile payments ecosystem. Merchants and consumers in the meantime are being seduced by the convenience of on-line and mobile payment solutions. Adopting the purchase and payment process as the unit of analysis, the current mobile payment landscape is reviewed with respect to the creation and consumption of customer value. From this analysis, a framework is derived juxtaposing customer value, related to what is being paid for, with payment integration, related to how payments are being made. The framework provides a theoretical and practical basis for considering the contribution of mobile technologies to the payment industry. The framework is then used to describe the components of a mobile payments pilot project being run on a trial population of 250 students on a campus in Ireland. In this manner, weaknesses in the value proposition for consumers and merchants were highlighted. Limitations of the framework as a research tool are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel numerical model of a Bent Backwards Duct Buoy (BBDB) Oscillating Water Column (OWC) Wave Energy Converter was created based on existing isolated numerical models of the different energy conversion systems utilised by an OWC. The novel aspect of this numerical model is that it incorporates the interdependencies of the different power conversion systems rather than modelling each system individually. This was achieved by accounting for the dynamic aerodynamic damping caused by the changing turbine rotational velocity by recalculating the turbine damping for each simulation sample and applying it via a feedback loop. The accuracy of the model was validated using experimental data collected during the Components for Ocean Renewable Energy Systems (CORES) EU FP-7 project that was tested in Galway Bay, Ireland. During the verification process, it was discovered that the model could also be applied as a valuable tool when troubleshooting device performance. A new turbine was developed and added to a full scale model after being investigated using Computational Fluid Dynamics. The energy storage capacity of the impulse turbine was investigated by modelling the turbine with both high and low inertia and applying three turbine control theories to the turbine using the full scale model. A single Maximum Power Point Tracking algorithm was applied to the low-inertia turbine, while both a fixed and dynamic control algorithm was applied to the high-inertia turbine. These results suggest that the highinertia turbine could be used as a flywheel energy storage device that could help minimize output power variation despite the low operating speed of the impulse turbine. This research identified the importance of applying dynamic turbine damping to a BBDB OWC numerical model, revealed additional value of the model as a device troubleshooting tool, and found that an impulse turbine could be applied as an energy storage system.