12 resultados para Rotational inertia
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
A novel numerical model of a Bent Backwards Duct Buoy (BBDB) Oscillating Water Column (OWC) Wave Energy Converter was created based on existing isolated numerical models of the different energy conversion systems utilised by an OWC. The novel aspect of this numerical model is that it incorporates the interdependencies of the different power conversion systems rather than modelling each system individually. This was achieved by accounting for the dynamic aerodynamic damping caused by the changing turbine rotational velocity by recalculating the turbine damping for each simulation sample and applying it via a feedback loop. The accuracy of the model was validated using experimental data collected during the Components for Ocean Renewable Energy Systems (CORES) EU FP-7 project that was tested in Galway Bay, Ireland. During the verification process, it was discovered that the model could also be applied as a valuable tool when troubleshooting device performance. A new turbine was developed and added to a full scale model after being investigated using Computational Fluid Dynamics. The energy storage capacity of the impulse turbine was investigated by modelling the turbine with both high and low inertia and applying three turbine control theories to the turbine using the full scale model. A single Maximum Power Point Tracking algorithm was applied to the low-inertia turbine, while both a fixed and dynamic control algorithm was applied to the high-inertia turbine. These results suggest that the highinertia turbine could be used as a flywheel energy storage device that could help minimize output power variation despite the low operating speed of the impulse turbine. This research identified the importance of applying dynamic turbine damping to a BBDB OWC numerical model, revealed additional value of the model as a device troubleshooting tool, and found that an impulse turbine could be applied as an energy storage system.
Resumo:
This study has considered the optimisation of granola breakfast cereal manufacturing processes by wet granulation and pneumatic conveying. Granola is an aggregated food product used as a breakfast cereal and in cereal bars. Processing of granola involves mixing the dry ingredients (typically oats, nuts, etc.) followed by the addition of a binder which can contain honey, water and/or oil. In this work, the design and operation of two parallel wet granulation processes to produce aggregate granola products were incorporated: a) a high shear mixing granulation process followed by drying/toasting in an oven. b) a continuous fluidised bed followed by drying/toasting in an oven. In high shear granulation the influence of process parameters on key granule aggregate quality attributes such as granule size distribution and textural properties of granola were investigated. The experimental results show that the impeller rotational speed is the single most important process parameter which influences granola physical and textural properties. After that binder addition rate and wet massing time also show significant impacts on granule properties. Increasing the impeller speed and wet massing time increases the median granule size while also presenting a positive correlation with density. The combination of high impeller speed and low binder addition rate resulted in granules with the highest levels of hardness and crispness. In the fluidised bed granulation process the effect of nozzle air pressure and binder spray rate on key aggregate quality attributes were studied. The experimental results show that a decrease in nozzle air pressure leads to larger in mean granule size. The combination of lowest nozzle air pressure and lowest binder spray rate results in granules with the highest levels of hardness and crispness. Overall, the high shear granulation process led to larger, denser, less porous and stronger (less likely to break) aggregates than the fluidised bed process. The study also examined the particle breakage of granola during pneumatic conveying produced by both the high shear granulation and the fluidised bed granulation process. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. Particle breakage increases with applied pressure drop, and a 90° bend pipe results in more attrition for all conveying velocities relative to other pipe geometry. Additionally for the granules produced in the high shear granulator; those produced at the highest impeller speed, while being the largest also have the lowest levels of proportional breakage while smaller granules produced at the lowest impeller speed have the highest levels of breakage. This effect clearly shows the importance of shear history (during granule production) on breakage during subsequent processing. In terms of the fluidised bed granulation, there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. Finally, a simple power law breakage model based on process input parameters was developed for both manufacturing processes. It was found suitable for predicting the breakage of granola breakfast cereal at various applied air velocities using a number of pipe configurations, taking into account shear histories.
Resumo:
The phosphorescence excitation spectra of two thiones, 4-H-1-xanthione (XT) and 4-H-1-pyrane-4-thione (PT), cooled in a supersonic jet were investigated. The vibronic lineshape of the T1z origin of PT measured by cavity ring-down spectroscopy is considered and the excited state rotational constants are calculated. For XT the 3A2(nπ* ) → X1A1 phosphorescence excitation spectrum was investigated in the region 14900-17600 cm-1. The structure observed is shown to be due to the T1← S0 absorption and an assignment in terms of the vibronic structure of the band is proposed. A previous assignment of the S1 ← S0 origin is considered and the transition involved is shown to be most probably due to the absorption of a vibronic tiplet state T1z,v7. An alternative but tentative assignment of the S1,0 ←S0,0 transition is suggested. In the case of PT the phosphorescence excitation spectrum was investigated in the region of the 1A2(ππ*) ← X1A1 absorption band between 27300 and 28800 cm-1. The spectrum exhibits complex features which are typical for the strong vibronic coupling case of two adjacent electronic states. The observed intermediate level structure was attributed to the coupling with a lower lying dark electronic state 1B1(nπ*2), whose origin was estimated to be ~ 825 - 1025 cm-1 below the origin of 1A2(ππ*)0. Consequences of the vibronic coupling on the decay dynamics of 1A2(ππ*) as well as tentative assignments of vibronic transitions 1A2(ππ*)v ← X1A1 are also discussed. In the T1z ← S0 cavity ring-down absorption spectrum of PT, the vibronic lineshape of the T1z origin is analysed. As the T1z line is separated from the T1x,1y lines by a large zero-field splitting it is possible to use an Asyrot-like program to calculate the vibrational-rotational parameters determining the lineshape. It is shown that PT is non-planar in the first excited triplet state and the lineshape is composed of a mixture of A-type and C-type bandshapes. The non-planarity of PT is discussed.
Resumo:
Buried heat sources can be investigated by examining thermal infrared images and comparing these with the results of theoretical models which predict the thermal anomaly a given heat source may generate. Key factors influencing surface temperature include the geometry and temperature of the heat source, the surface meteorological environment, and the thermal conductivity and anisotropy of the rock. In general, a geothermal heat flux of greater than 2% of solar insolation is required to produce a detectable thermal anomaly in a thermal infrared image. A heat source of, for example, 2-300K greater than the average surface temperature must be a t depth shallower than 50m for the detection of the anomaly in a thermal infrared image, for typical terrestrial conditions. Atmospheric factors are of critical importance. While the mean atmospheric temperature has little significance, the convection is a dominant factor, and can act to swamp the thermal signature entirely. Given a steady state heat source that produces a detectable thermal anomaly, it is possible to loosely constrain the physical properties of the heat source and surrounding rock, using the surface thermal anomaly as a basis. The success of this technique is highly dependent on the degree to which the physical properties of the host rock are known. Important parameters include the surface thermal properties and thermal conductivity of the rock. Modelling of transient thermal situations was carried out, to assess the effect of time dependant thermal fluxes. One-dimensional finite element models can be readily and accurately applied to the investigation of diurnal heat flow, as with thermal inertia models. Diurnal thermal models of environments on Earth, the Moon and Mars were carried out using finite elements and found to be consistent with published measurements. The heat flow from an injection of hot lava into a near surface lava tube was considered. While this approach was useful for study, and long term monitoring in inhospitable areas, it was found to have little hazard warning utility, as the time taken for the thermal energy to propagate to the surface in dry rock (several months) in very long. The resolution of the thermal infrared imaging system is an important factor. Presently available satellite based systems such as Landsat (resolution of 120m) are inadequate for detailed study of geothermal anomalies. Airborne systems, such as TIMS (variable resolution of 3-6m) are much more useful for discriminating small buried heat sources. Planned improvements in the resolution of satellite based systems will broaden the potential for application of the techniques developed in this thesis. It is important to note, however, that adequate spatial resolution is a necessary but not sufficient condition for successful application of these techniques.
Resumo:
This study examined the spatial and temporal variability of dung beetle assemblages across a variety of scales e.g. from the between-pad scale (examining the effects of dung size and type) to larger spatial scales encompassing southern Ireland. Dung beetle assemblage structure as sampled by dung pad cohort samples and dung baited pitfall trapping were compared. Generally, the rank order of abundance of dung beetle species was significantly correlated between pitfall catches and cohort pad samples. Across different dung sizes, in both pitfall catches and cohort pad samples, the relative abundance of species was frequently significantly different, but the rank order of abundance of dung beetle was usually significantly correlated. Considerable variations in pitfall catches at temporal scales of a few days appeared to be closely related to weather conditions and rotational grazing. However, despite considerable variation in absolute abundances between consecutive days of sampling, assemblage structure typically remained very similar. The relationship between dung pad size and dung beetle colonisation was investigated. In field experiments in which pads of different sizes (0.25 L, 0.5 L, 1.0 L and 1.5 L) were artificially deposited, there was a positive relationship between pad size and both biomass and number of beetles colonising dung pads and pitfall traps. In addition, with one exception, the field experiments indicated a general positive relationship between dung pad size and biomass density (dung beetle biomass per unit dung volume). A laboratory experiment indicated that pat residence times of A. rufipes were significantly correlated with dung pad size. Investigation of naturally-deposited cow dung pads in the field also indicated that both larval numbers and densities were significantly correlated with dung pad size. These results were discussed in the context of theory related to aggregation and coexistence of species, and resource utilisation by organisms in ephemeral, patchy resources. The colonisation by dung beetles of dung types from native herbivores (sheep, horse and cow) was investigated in field experiments. There were significant differences between the dung types in the chemical parameters measured, and there were significant differences in abundances of dung beetles colonising the dung types. Sheep dung was typically the preferred dung type. Data from these field experiments, and from published literature, indicated that dung beetle species can display dung type preferences, in terms of comparisons of both absolute and relative abundances. In addition, data from laboratory experiments indicate that both Aphodius larval production and pat residence times tended to be higher in those dung types which were preferred by adult Aphodius in the colonisation experiments. Data from dung-baited pitfall trapping (from this and another study) at several sites (up to 180 km distant) and over a number of years (between 1991 and 1996) were used to investigate spatial and temporal variation in dung beetle assemblage structure and composition (Aphodius, Sphaeridium and Geotrupes) across a range of scales in southern Ireland. Species richness levels, species composition and rank order of abundances were very similar between the assemblages. The temporal variability between seasons within any year exceeded temporal variability between years. DCA ordinations indicated that there was a similar level of variability between assemblage structure from the between-field (~1km) to regional (~180 km) spatial scales, and between year (6 years) temporal scales. At the biogeographical spatial scale, analysis of data from the literature indicated that there was considerable variability at this scale, largely due to species turnover.
Resumo:
Ireland experienced two critical junctures when its economic survival was threatened: 1958/9 and 1986/7. Common to both crises was the supplanting of long established practices, that had become an integral part of the political culture of the state, by new ideas that ensured eventual economic recovery. In their adoption and implementation these ideas also fundamentally changed the institutions of state – how politics was done, how it was organised and regulated. The end result was the transformation of the Irish state. The main hypothesis of this thesis is that at those critical junctures the political and administrative elites who enabled economic recovery were not just making pragmatic decisions, their actions were influenced by ideas. Systematic content analysis of the published works of the main ideational actors, together with primary interviews with those actors still alive, reveals how their ideas were formed, what influenced them, and how they set about implementing their ideas. As the hypothesis assumes institutional change over time historical institutionalism serves as the theoretical framework. Central to this theory is the idea that choices made when a policy is being initiated or an institution formed will have a continuing influence long into the future. Institutions of state become ‘path dependent’ and impervious to change – the forces of inertia take over. That path dependency is broken at critical junctures. At those moments ideas play a major role as they offer a set of ready-made solutions. Historical institutionalism serves as a robust framework for proving that in the transformation of Ireland the role of ideas in punctuating institutional path dependency at critical junctures was central.
Resumo:
The thesis initially gives an overview of the wave industry and the current state of some of the leading technologies as well as the energy storage systems that are inherently part of the power take-off mechanism. The benefits of electrical energy storage systems for wave energy converters are then outlined as well as the key parameters required from them. The options for storage systems are investigated and the reasons for examining supercapacitors and lithium-ion batteries in more detail are shown. The thesis then focusses on a particular type of offshore wave energy converter in its analysis, the backward bent duct buoy employing a Wells turbine. Variable speed strategies from the research literature which make use of the energy stored in the turbine inertia are examined for this system, and based on this analysis an appropriate scheme is selected. A supercapacitor power smoothing approach is presented in conjunction with the variable speed strategy. As long component lifetime is a requirement for offshore wave energy converters, a computer-controlled test rig has been built to validate supercapacitor lifetimes to manufacturer’s specifications. The test rig is also utilised to determine the effect of temperature on supercapacitors, and determine application lifetime. Cycle testing is carried out on individual supercapacitors at room temperature, and also at rated temperature utilising a thermal chamber and equipment programmed through the general purpose interface bus by Matlab. Application testing is carried out using time-compressed scaled-power profiles from the model to allow a comparison of lifetime degradation. Further applications of supercapacitors in offshore wave energy converters are then explored. These include start-up of the non-self-starting Wells turbine, and low-voltage ride-through examined to the limits specified in the Irish grid code for wind turbines. These applications are investigated with a more complete model of the system that includes a detailed back-to-back converter coupling a permanent magnet synchronous generator to the grid. Supercapacitors have been utilised in combination with battery systems for many applications to aid with peak power requirements and have been shown to improve the performance of these energy storage systems. The design, implementation, and construction of coupling a 5 kW h lithium-ion battery to a microgrid are described. The high voltage battery employed a continuous power rating of 10 kW and was designed for the future EV market with a controller area network interface. This build gives a general insight to some of the engineering, planning, safety, and cost requirements of implementing a high power energy storage system near or on an offshore device for interface to a microgrid or grid.
Resumo:
Aim: Diabetes is an important barometer of health system performance. This chronic condition is a source of significant morbidity, premature mortality and a major contributor to health care costs. There is an increasing focus internationally, and more recently nationally, on system, practice and professional-level initiatives to promote the quality of care. The aim of this thesis was to investigate the ‘quality chasm’ around the organisation and delivery of diabetes care in general practice, to explore GPs’ attitudes to engaging in quality improvement activities and to examine efforts to improve the quality of diabetes care in Ireland from practice to policy. Methods: Quantitative and qualitative methods were used. As part of a mixed methods sequential design, a postal survey of 600 GPs was conducted to assess the organization of care. This was followed by an in-depth qualitative study using semi-structured interviews with a purposive sample of 31 GPs from urban and rural areas. The qualitative methodology was also used to examine GPs’ attitudes to engaging in quality improvement. Data were analysed using a Framework approach. A 2nd observation study was used to assess the quality of care in 63 practices with a special interest in diabetes. Data on 3010 adults with Type 2 diabetes from 3 primary care initiatives were analysed and the results were benchmarked against national guidelines and standards of care in the UK. The final study was an instrumental case study of policy formulation. Semi-structured interviews were conducted with 15 members of the Expert Advisory Group (EAG) for Diabetes. Thematic analysis was applied to the data using 3 theories of the policy process as analytical tools. Results: The survey response rate was 44% (n=262). Results suggested care delivery was largely unstructured; 45% of GPs had a diabetes register (n=157), 53% reported using guidelines (n=140), 30% had formal call recall system (n=78) and 24% had none of these organizational features (n=62). Only 10% of GPs had a formal shared protocol with the local hospital specialist diabetes team (n=26). The lack of coordination between settings was identified as a major barrier to providing optimal care leading to waiting times, overburdened hospitals and avoidable duplication. The lack of remuneration for chronic disease management had a ripple effect also creating costs for patients and apathy among GPs. There was also a sense of inertia around quality improvement activities particularly at a national level. This attitude was strongly influenced by previous experiences of change in the health system. In contrast GP’s spoke positively about change at a local level which was facilitated by a practice ethos, leadership and special interest in diabetes. The 2nd quantitative study found that practices with a special interest in diabetes achieved a standard of care comparable to the UK in terms of the recording of clinical processes of care and the achievement of clinical targets; 35% of patients reached the HbA1c target of <6.5% compared to 26% in England and Wales. With regard to diabetes policy formulation, the evolving process of action and inaction was best described by the Multiple Streams Theory. Within the EAG, the formulation of recommendations was facilitated by overarching agreement on the “obvious” priorities while the details of proposals were influenced by personal preferences and local capacity. In contrast the national decision-making process was protracted and ambiguous. The lack of impetus from senior management coupled with the lack of power conferred on the EAG impeded progress. Conclusions: The findings highlight the inconsistency of diabetes care in Ireland. The main barriers to optimal diabetes management center on the organization and coordination of care at the systems level with consequences for practice, providers and patients. Quality improvement initiatives need to stimulate a sense of ownership and interest among frontline service providers to address the local sense of inertia to national change. To date quality improvement in diabetes care has been largely dependent the “special interest” of professionals. The challenge for the Irish health system is to embed this activity as part of routine practice, professional responsibility and the underlying health care culture.
Resumo:
Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence.
The evolution of the medical professions in eighteenth-century Ireland: An institutional perspective
Resumo:
Ireland, in the eighteenth century, followed the classic tripartite division of regular medical practitioners into physicians, surgeons and apothecaries. At the beginning of the century surgeons and apothecaries were regarded as mere tradesmen, but by the end of the century both were regarded as professionals and had the right to regulate their respective professions. Practitioners in different regions of Europe developed in a different manner, and eighteenth-century practitioners in Ireland developed independently from their English counterparts. In common with Britain and Europe in the eighteenth century, the total number of practitioners increased in Ireland, and by the end of the century, apothecaries were the largest group in Dublin, closely followed by the surgeons. Surgeons and apothecaries at the start of the eighteenth century belonged to the same guild. However in mid-century, St Luke's guild of apothecaries was established and this provided the apothecaries with a new identity that allowed them to pursue auto regulation, rather than hitherto, when they had been regulated by the physicians. This was vital to the apothecaries as they were in direct commercial competition with both the physicians and the surgeons and faced increasing pressure from both druggists and the disparate group of practitioners known as the irregulars. The 1765 County Infirmaries Act established a hospital in virtually every county in Ireland, and cast the surgeon as the primary medical officer in the countrywide network of hospitals. This legislation, which was unique in Europe, had the unintended consequence of elevating the status of the surgeons, as prior to this physicians were always in the ascendancy in the voluntary hospitals in Ireland and Britain, in contrast to France. The status of the surgeons was further enhanced by the establishment of the College of Surgeons in Ireland in 1784, which provided them with a new corporate identity, the authority to regulate the profession countrywide, and, also, the ability to educate surgeons in Ireland. The establishment of the College of Surgeons placed further pressure on the apothecaries to demonstrate that they also had a recognisable identity, and the authority to regulate their own profession. This was achieved with the 1791 Apothecaries Act which established the Apothecaries Hall and give the apothecaries the right to regulate themselves. This innovative legislation deemed the apothecaries a profession, and was enacted twenty-four years prior to similar legislation in Britain. Commercial pressure from druggists and, probably, irregulars expedited the requirement of the apothecaries to establish a new corporate identity, in order to distance themselves from these groups. The changing status of both apothecaries and surgeons had little effect on the physicians as a group, and, despite being the beneficiaries of a generous bequest from Sir Patrick Dun in 1711 to provide medical chairs in Dublin, the physicians displayed an inertia during the eighteenth century that was not in keeping with the developments that occurred in the contemporary Dublin medical world. The fact that it took ninety-five years, and that five acts of parliament, two House of Commons enquiries and a House of Lords enquiry were required to ensure that Dun's wishes were brought to fruition demonstrates that the physicians did not develop at the same pace as the other medical groups in the city. Had Dun’s bequest been implemented as he desired, Dublin, with a number of voluntary hospitals, would have been well placed to provide comprehensive tuition for medical students in the eighteenth century. It was not until the nineteenth century that the city, and the populace, benefited from this legacy. This thesis will trace these developments in the context of changes that occurred in contemporary medical education and diagnosis in Ireland, Britain and France. It will demonstrate that Irish practitioners developed independently, influenced mainly by local issues, but also by those who had travelled abroad and returned to Ireland with new concepts and ideas, ensuring that Irish medical practitioners had the institutional structure that could encompass the diagnostic and regulatory changes that would become accepted in the nineteenth century.
Resumo:
Of late, the magnetic properties of micro/nano-structures have attracted intense research interest both fundamentally and technologically particularly to address the question that how the manipulation in the different layers of nanostructures, geometry of a patterned structure can affect the overall magnetic properties, while generating novel applications such as in magnetic sensors, storage devices, integrated inductive components and spintronic devices. Depending on the applications, materials with high, medium or low magnetic anisotropy and their possible manipulation are required. The most dramatic manifestation in this respect is the chance to manipulate the magnetic anisotropy over the intrinsic preferential direction of the magnetization, which can open up more functionality particularly for device applications. Types of magnetic anisotropies of different nanostructured materials and their manipulation techniques are investigated in this work. Detail experimental methods for the quantitative determination of magnetic anisotropy in nanomodulated Ni45Fe55 thin film are studied. Magnetic field induced in-plane rotations within the nanomodulated Ni45Fe55 continuous films revealed various rotational symmetries of magnetic anisotropy due to dipolar interactions showing a crossover from lower to higher fold of symmetry as a function of modulation geometry. In a second approach, the control of exchange anisotropy at ferromagnetic (FM) – aniferomagnetic (AFM) interface in multifferoic nanocomposite materials, where two different phase/types of materials were simultaneously synthesized, was investigated. The third part of this work was to study the electroplated thin films of metal alloy nanocomposite for enhanced exchange anisotropy. In this work a unique observation of an anti-clock wise as well as a clock wise hysteresis loop formation in the Ni,Fe solid solution with very low coercivity and large positive exchange anisotropy/exchange bias have been investigated. Hence, controllable positive and negative exchange anisotropy has been observed for the first time which has high potential applications such as in MRAM devices.