2 resultados para Risk-informed Disaster Management:

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research examined sex offender risk assessment and management in Ireland. It focused on the statutory agencies with primary responsibility (Garda Síochána and the Probation Service). The goal was to document the historical, contextual and current systems, in addition to identifying areas of concern/improvements. The research was a mixed-methods approach. Eight studies were conducted. This incorporated documentary reviews of four Commission to Inquire Reports, qualitative interviews/focus groups with Garda staff, Probation Service staff, statutory agencies, community stakeholders, various Non-Governmental Organisations (NGOs) and sex offenders. Quantitative questionnaires were also administered to Garda staff. In all over 70 interviews were conducted and questionnaires were forwarded to 270 Garda members. The overall findings are: •Sex offender management in Ireland has become formal only since 2001. Knowledge, skills and expertise is in its infancy and is still evolving. •Mixed reviews and questions regarding fitness for purpose of currently used risk assessments tools were noted. •The Sex Offender Act 2001 requires additional elements to ensure safe sex offender monitoring and public protection. A judicial review of the Sex Offender Act 2001 was recommended by many respondents. •Interagency working under SORAM was hugely welcomed. The sharing of information has been welcomed by managing agencies as the key benefit to improving sex offender management. •Respondents reported that in practice, sex offender management in Ireland is fragmented and unevenly implemented. The research concluded that an independent National Sex Offender Authority should be established as an oversight and regulatory body for policy, strategy and direction in sex offender management. Further areas of research were also highlighted: ongoing evaluation and audits of the joint agency process and systems in place; recidivism studies tracking the risk assessment ratings and subsequent offending; and an evaluation of the current status of sex offender housing in Ireland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of structural health monitoring of civil structures is ever expanding and by assessing the dynamical condition of structures, informed maintenance management can be conducted at both individual and network levels. With the continued growth of information age technology, the potential arises for smart monitoring systems to be integrated with civil infrastructure to provide efficient information on the condition of a structure. The focus of this thesis is the integration of smart technology with civil infrastructure for the purposes of structural health monitoring. The technology considered in this regard are devices based on energy harvesting materials. While there has been considerable focus on the development and optimisation of such devices using steady state loading conditions, their applications for civil infrastructure are less known. Although research is still in initial stages, studies into the uses associated with such applications are very promising. Through the use of the dynamical response of structures to a variety of loading conditions, the energy harvesting outputs from such devices is established and the potential power output determined. Through a power variance output approach, damage detection of deteriorating structures using the energy harvesting devices is investigated. Further applications of the integration of energy harvesting devices with civil infrastructure investigated by this research includes the use of the power output as a indicator for control. Four approaches are undertaken to determine the potential applications arising from integrating smart technology with civil infrastructure, namely • Theoretical analysis to determine the applications of energy harvesting devices for vibration based health monitoring of civil infrastructure. • Laboratory experimentation to verify the performance of different energy harvesting configurations for civil infrastructure applications. • Scaled model testing as a method to experimentally validate the integration of the energy harvesting devices with civil infrastructure. • Full scale deployment of energy harvesting device with a bridge structure. These four approaches validate the application of energy harvesting technology with civil infrastructure from a theoretical, experimental and practical perspective.