3 resultados para Rickey Powers

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis covers the Irish House of Lords in the last two decades of its life. A number of important themes run through the work - the regency crisis, patronage, the management of the Lords, the relationship between the Lords and Commons. These themes, explored from different angles, are vital to an understanding of the political role of the upper house in the 1780s and 1790s. This study is confined to the Lords as a political institution and thus its judicial role as final court of appeal, which was restored to it in 1782, will not be explored here. The thesis consists of two parts. Part one examines the structure and powers of the House of Lords while part two looks at the parties and policies of the house. Chapter one discusses the British constitution as imposed upon Ireland. Chapter two suggests the reasons why constitutional changes were introduced in 1782, and looks at the contribution made by the Irish House of Lords in securing these changes. Chapter three explores the various channels of influence which the peers enjoyed. Chapter four explores the sometimes tense relationship between Lords and Commons. Chapter five examines management of the House of Lords by Dublin Castle. Part two, begins at chapter six. This chapter explores the leadership of both parties within the Lords. Chapter seven looks at how patronage was used to reward those who were loyal to the government. Chapter eight explores the influence of the Whig opposition. Chapter nine looks at the controversial attempts made by Pitt and his ministry during the 1790s to win the support of catholics and turn them from the lure of French ideas, and of the response of the peers to these attempts. Chapter ten is concerned with the relationship between the peers of the House of Lords and the lords lieutenant during the 1790s. Chapter eleven looks at the Union and the House of Lords and attempts to answer the question historians have long asked: why did the Irish parliament and the House of Lords in particular, look favourably on the proposed union of the two kingdoms and the end of their own institution? The House of Lords in the closing decades of the eighteenth century was an institution within which the wealth and power of the kingdom could be found. Its members were politically active, both inside and outside the house. It contained a majority who saw the Crown as the source of stability, but it was a living and evolving political organism and therefore it contained men who believed that the Crown should have its influence limited. This evolution is also demonstrated in its desire for political change in 1782 and 1788. Its last, and perhaps most radical decision, was to vote for its own demise in 1900.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the evanescent field sensing techniques of tapered optical nanofibres and microspherical resonators are investigated. This includes evanescent field spectroscopy of a silica nanofibre in a rubidium vapour; thermo-optical tuning of Er:Yb co-doped phosphate glass microspheres; optomechanical properties of microspherical pendulums; and the fabrication and characterisation of borosilicate microbubble resonators. Doppler-broadened and sub-Doppler absorption spectroscopic techniques are performed around the D2 transition (780.24 nm) of rubidium using the evanescent field produced at the waist of a tapered nanofibre with input probe powers as low as 55 nW. Doppler-broadened Zeeman shifts and a preliminary dichroic atomic vapour laser lock (DAVLL) line shape are also observed via the nanofibre waist with an applied magnetic field of 60 G. This device has the potential for laser frequency stabilisation while also studying the effects of atom-surface interactions. A non-invasive thermo-optical tuning technique of Er:Yb co-doped microspheres to specific arbitrary wavelengths is demonstrated particularly to 1294 nm and the 5S1/2F=3 to 5P3/2Fʹ=4 laser cooling transition of 85Rb. Reversible tuning ranges of up to 474 GHz and on resonance cavity timescales on the order of 100 s are reported. This procedure has prospective applications for sensing a variety of atomic or molecular species in a cavity quantum electrodynamics (QED) experiments. The mechanical characteristics of a silica microsphere pendulum with a relatively low spring constant of 10-4 Nm-1 are explored. A novel method of frequency sweeping the motion of the pendulum to determine its natural resonance frequencies while overriding its sensitivity to environmental noise is proposed. An estimated force of 0.25 N is required to actuate the pendulum by a displacement of (1-2) μm. It is suggested that this is of sufficient magnitude to be experienced between two evanescently coupled microspheres (photonic molecule) and enable spatial trapping of the micropendulum. Finally, single-input borosilicate microbubble resonators with diameters <100 μm are fabricated using a CO2 laser. Optical whispering gallery mode spectra are observed via evanescent coupling with a tapered fibre. A red-shift of (4-22) GHz of the resonance modes is detected when the hollow cavity was filled with nano-filtered water. A polarisation conversion effect, with an efficiency of 10%, is observed when the diameter of the coupling tapered fibre waist is varied. This effect is also achieved by simply varying the polarisation of the input light in the tapered fibre where the efficiency is optimised to 92%. Thus, the microbubble device acts as a reversible band-pass to band-stop optical filter for cavity-QED, integrated solid-state and semiconductor circuit applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Future high speed communications networks will transmit data predominantly over optical fibres. As consumer and enterprise computing will remain the domain of electronics, the electro-optical conversion will get pushed further downstream towards the end user. Consequently, efficient tools are needed for this conversion and due to many potential advantages, including low cost and high output powers, long wavelength Vertical Cavity Surface Emitting Lasers (VCSELs) are a viable option. Drawbacks, such as broader linewidths than competing options, can be mitigated through the use of additional techniques such as Optical Injection Locking (OIL) which can require significant expertise and expensive equipment. This thesis addresses these issues by removing some of the experimental barriers to achieving performance increases via remote OIL. Firstly, numerical simulations of the phase and the photon and carrier numbers of an OIL semiconductor laser allowed the classification of the stable locking phase limits into three distinct groups. The frequency detuning of constant phase values (ø) was considered, in particular ø = 0 where the modulation response parameters were shown to be independent of the linewidth enhancement factor, α. A new method to estimate α and the coupling rate in a single experiment was formulated. Secondly, a novel technique to remotely determine the locked state of a VCSEL based on voltage variations of 2mV−30mV during detuned injection has been developed which can identify oscillatory and locked states. 2D & 3D maps of voltage, optical and electrical spectra illustrate corresponding behaviours. Finally, the use of directly modulated VCSELs as light sources for passive optical networks was investigated by successful transmission of data at 10 Gbit/s over 40km of single mode fibre (SMF) using cost effective electronic dispersion compensation to mitigate errors due to wavelength chirp. A widely tuneable MEMS-VCSEL was established as a good candidate for an externally modulated colourless source after a record error free transmission at 10 Gbit/s over 50km of SMF across a 30nm single mode tuning range. The ability to remotely set the emission wavelength using the novel methods developed in this thesis was demonstrated.