6 resultados para Religions (Proposed, universal, etc.)
em CORA - Cork Open Research Archive - University College Cork - Ireland
An empirical examination of risk equalisation in a regulated community rated health insurance market
Resumo:
Despite universal access entitlements to the public healthcare system in Ireland, over half the population is covered by voluntary private health insurance. The market operates on the basis of community rating, open enrolment and lifetime cover. A set of minimum benefits also exists, and two risk equalisation schemes have been put in place but neither was implemented. These schemes have proved highly controversial. To date, the debate has primarily consisted of qualitative arguments. This study adds a quantitative element by analysing a number of pertinent issues. A model of a community rated insurance market is developed, which shows that community rating can only be maintained in a competitive market if all insurers in the market have the same risk profile as the market overall. This has relevance to the Irish market in the aftermath of a Supreme Court decision to set aside risk equalisation. Two reasons why insurers’ risk profiles might differ are adverse selection and risk selection. Evidence is found of the existence of both forms of selection in the Irish market. A move from single rate community rating to lifetime community rating in Australia had significant consequences for take-up rates and the age profile of the insured population. A similar move has been proposed in Ireland. It is found that, although this might improve the stability of community rating in the short term, it would not negate the need for risk equalisation. If community rating were to collapse then risk rating might result. A comparison of the Irish, Australian and UK health insurance markets suggests that community rating encourages higher take-up among older consumers than risk rating. Analysis of Irish hospital discharge figures suggests that this yields significant savings for the Irish public healthcare system. This thesis has implications for government policy towards private health insurance in Ireland.
Resumo:
This thesis is concentrated on the historical aspects of the elitist field sports of deer stalking and game shooting, as practiced by four Irish landed ascendancy families in the south west of Ireland. Four great estates were selected for study. Two of these were, by Irish standards, very large: the Kenmare estate of over 136,000 acres in the ownership of the Roman Catholic Earls of Kenmare, and the Herbert estate of over 44,000 acres in the ownership of the Protestant Herbert family. The other two were, in relative terms, small: the Grehan estate of c.7,500 acres in the ownership of the Roman Catholic Grehan family, and the Godfrey estate of c.5,000 acres, in the ownership of the Protestant Barons Godfrey. This mixture of contrasting estate size, owner's religions, nobleman, minor aristocrat and untitled gentry should, it is argued, yield a diversity of the field sports and lifestyles of their owners, and go some way to assess the contributions, good or bad, they have bequeathed to modern Ireland. Equally, it should help in assessing what importance, if any, applied to hunting. In this context, hunting is here used in its broadest meaning, and includes deer stalking and game shooting, as well as hunting with dogs and hounds on foot and horseback. Where a specific type of hunting is involved, it is so described; for example, fox hunting, stag hunting, hare hunting. Similarly, the term game is sometimes used in sporting literature to encompass all species of quarry killed, and can include deer, ground game (hares and rabbits), waterfowl, and various species of game birds. Where it refers to specific species, these are so described; for example grouse, pheasants, woodcork, wild duck, etc. Since two of these estates - the Kenmare and Herbert - each created a deer forest, unique in mid-19th century Ireland, they form the core study estates; the two smaller estates serve as comparative studies. And, equally unique, as these two larger estates held the only remnant population of native Irish red deer, the survival of that herd itself forms a concomitant core area of analysis. The numerary descriptions applied to these animals in popular literature are critically reassessed against prime source historical evidence, as are the so-called deer forest 'clearances'. The core period, 1840 to 1970, is selected as the seminal period, spanning 130 years, from the creation of the deer forests to when a fundamental change in policy and administration was introduced by the state. Comparison is made with similar estates elsewhere, in Britain and especially in Scotland. Their influence on the Irish methods and style of hunting is historically examined.
Resumo:
Semiconductor nanowires, particularly group 14 semiconductor nanowires, have been the subject of intensive research in the recent past. They have been demonstrated to provide an effective, versatile route towards the continued miniaturisation and improvement of microelectronics. This thesis aims to highlight some novel ways of fabricating and controlling various aspects of the growth of Si and Ge nanowires. Chapter 1 highlights the primary technique used for the growth of nanowires in this study, namely, supercritical fluid (SCF) growth reactions. The advantages (and disadvantages) of this technique for the growth of Si and Ge nanowires are highlighted, citing numerous examples from the past ten years. The many variables involved in this technique are discussed along with the resultant characteristics of nanowires produced (diameter, doping, orientation etc.). Chapter 2 outlines the experimental methodologies used in this thesis. The analytical techniques used for the structural characterisation of nanowires produced are also described as well as the techniques used for the chemical analysis of various surface terminations. Chapter 3 describes the controlled self-seeded growth of highly crystalline Ge nanowires, in the absence of conventional metal seed catalysts, using a variety of oligosilylgermane precursors and mixtures of germane and silane compounds. A model is presented which describes the main stages of self-seeded Ge nanowire growth (nucleation, coalescence and Ostwald ripening) from the oligosilylgermane precursors and in conjunction with TEM analysis, a mechanism of growth is proposed. Chapter 4 introduces the metal assisted etching (MAE) of Si substrates to produce Si nanowires. A single step metal-assisted etch (MAE) process, utilising metal ion-containing HF solutions in the absence of an external oxidant, was developed to generate heterostructured Si nanowires with controllable porous (isotropically etched) and non-porous (anisotropically etched) segments. In Chapter 5 the bottom-up growth of Ge nanowires, similar to that described in Chapter 3, and the top down etching of Si, described in Chapter 4, are combined. The introduction of a MAE processing step in order to “sink” the Ag seeds into the growth substrate, prior to nanowire growth, is shown to dramatically decrease the mean nanowire diameters and to narrow the diameter distributions. Finally, in Chapter 6, the biotin – streptavidin interaction was explored for the purposes of developing a novel Si junctionless nanowire transistor (JNT) sensor.
Resumo:
Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications.
Resumo:
A wireless sensor network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. In addition, minimising the number of relay nodes might lead to long routing paths to the sink, which may cause problems of data latency. This data latency is extremely important in wireless sensor network applications such as battlefield surveillance, intrusion detection, disaster rescue, highway traffic coordination, etc. where they must not violate the real-time constraints. Therefore, we also consider the problem of deploying multiple sinks in order to improve the network performance. Previous research has only parts of this problem in isolation, and has not properly considered the problems of moving through a constrained environment or discovering changes to that environment during the repair or network quality after the restoration. In this thesis, we firstly consider a base problem in which we assume the exploration tasks have already been completed, and so our aim is to optimise our use of resources in the static fully observed problem. In the real world, we would not know the radio and physical environments after damage, and this creates a dynamic problem where damage must be discovered. Therefore, we extend to the dynamic problem in which the network repair problem considers both exploration and restoration. We then add a hop-count constraint for network quality in which the desired locations can talk to a sink within a hop count limit after the network is restored. For each new problem of the network repair, we have proposed different solutions (heuristics and/or complete algorithms) which prioritise different objectives. We evaluate our solutions based on simulation, assessing the quality of solutions (node cost, movement cost, computation time, and total restoration time) by varying the problem types and the capability of the agent that makes the repair. We show that the relative importance of the objectives influences the choice of algorithm, and different speeds of movement for the repairing agent have a significant impact on performance, and must be taken into account when selecting the algorithm. In particular, the node-based approaches are the best in the node cost, and the path-based approaches are the best in the mobility cost. For the total restoration time, the node-based approaches are the best with a fast moving agent while the path-based approaches are the best with a slow moving agent. For a medium speed moving agent, the total restoration time of the node-based approaches and that of the path-based approaches are almost balanced.
Resumo:
The wonder of the last century has been the rapid development in technology. One of the sectors that it has touched immensely is the electronic industry. There has been exponential development in the field and scientists are pushing new horizons. There is an increased dependence in technology for every individual from different strata in the society. Atomic Layer Deposition (ALD) is a unique technique for growing thin films. It is widely used in the semiconductor industry. Films as thin as few nanometers can be deposited using this technique. Although this process has been explored for a variety of oxides, sulphides and nitrides, a proper method for deposition of many metals is missing. Metals are often used in the semiconductor industry and hence are of significant importance. A deficiency in understanding the basic chemistry at the nanoscale for possible reactions has delayed the improvement in metal ALD. In this thesis, we study the intrinsic chemistry involved for Cu ALD. This work reports computational study using Density Functional Theory as implemented in TURBOMOLE program. Both the gas phase and surface reactions are studied in most of the cases. The merits and demerits of a promising transmetallation reaction have been evaluated at the beginning of the study. Further improvements in the structure of precursors and coreagent have been proposed. This has led to the proposal of metallocenes as co-reagents and Cu(I) carbene compounds as new set of precursors. A three step process for Cu ALD that generates ligand free Cu layer after every ALD pulse has also been studied. Although the chemistry has been studied under the umbrella of Cu ALD the basic principles hold true for ALD of other metals (e.g. Co, Ni, Fe ) and also for other branches of science like thin film deposition other than ALD, electrochemical reactions, etc.