12 resultados para Reconfigurable antennas

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced sensory systems address a number of major obstacles towards the provision for cost effective and proactive rehabilitation. Many of these systems employ technologies such as high-speed video or motion capture to generate quantitative measurements. However these solutions are accompanied by some major limitations including extensive set-up and calibration, restriction to indoor use, high cost and time consuming data analysis. Additionally many do not quantify improvement in a rigorous manner for example gait analysis for 5 minutes as opposed to 24 hour ambulatory monitoring. This work addresses these limitations using low cost, wearable wireless inertial measurement as a mobile and minimal infrastructure alternative. In cooperation with healthcare professionals the goal is to design and implement a reconfigurable and intelligent movement capture system. A key component of this work is an extensive benchmark comparison with the 'gold standard' VICON motion capture system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effects of antenna detuning on wireless devices caused by the presence of the human body,particularly the wrist. To facilitate repeatable and consistent antenna impedance measurements, an accurate and low cost human phantom arm, that simulates human tissue at 433MHz frequencies, has been developed and characterized. An accurate and low cost hardware prototype system has been developed to measure antenna return loss at a frequency of 433MHz and the design, fabrication and measured results are presented. This system provides a flexible means of evaluating closed-loop reconfigurable antenna tuning circuits for use in wireless mote applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accepted Version

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A planar reconfigurable linear (also rectilinear) rigid-body motion linkage (RLRBML) with two operation modes, that is, linear rigid-body motion mode and lockup mode, is presented using only R (revolute) joints. The RLRBML does not require disassembly and external intervention to implement multi-task requirements. It is created via combining a Robert’s linkage and a double parallelogram linkage (with equal lengths of rocker links) arranged in parallel, which can convert a limited circular motion to a linear rigid-body motion without any reference guide way. This linear rigid-body motion is achieved since the double parallelogram linkage can guarantee the translation of the motion stage, and Robert’s linkage ensures the approximate straight line motion of its pivot joint connecting to the double parallelogram linkage. This novel RLRBML is under the linear rigid-body motion mode if the four rocker links in the double parallelogram linkage are not parallel. The motion stage is in the lockup mode if all of the four rocker links in the double parallelogram linkage are kept parallel in a tilted position (but the inner/outer two rocker links are still parallel). In the lockup mode, the motion stage of the RLRBML is prohibited from moving even under power off, but the double parallelogram linkage is still moveable for its own rotation application. It is noted that further RLRBMLs can be obtained from the above RLRBML by replacing Robert’s linkage with any other straight line motion linkage (such as Watt’s linkage). Additionally, a compact RLRBML and two single-mode linear rigid-body motion linkages are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are currently having a revolutionary impact in rapidly emerging wearable applications such as health and fitness monitoring amongst many others. These types of Body Sensor Network (BSN) applications require highly integrated wireless sensor devices for use in a wearable configuration, to monitor various physiological parameters of the user. These new requirements are currently posing significant design challenges from an antenna perspective. This work addresses several design challenges relating to antenna design for these types of applications. In this thesis, a review of current antenna solutions for WSN applications is first presented, investigating both commercial and academic solutions. Key design challenges are then identified relating to antenna size and performance. A detailed investigation of the effects of the human body on antenna impedance characteristics is then presented. A first-generation antenna tuning system is then developed. This system enables the antenna impedance to be tuned adaptively in the presence of the human body. Three new antenna designs are also presented. A compact, low-cost 433 MHz antenna design is first reported and the effects of the human body on the impedance of the antenna are investigated. A tunable version of this antenna is then developed, using a higher performance, second-generation tuner that is integrated within the antenna element itself, enabling autonomous tuning in the presence of the human body. Finally, a compact sized, dual-band antenna is reported that covers both the 433 MHz and 2.45 GHz bands to provide improved quality of service (QoS) in WSN applications. To date, state-of-the-art WSN devices are relatively simple in design with limited antenna options available, especially for the lower UHF bands. In addition, current devices have no capability to deal with changing antenna environments such as in wearable BSN applications. This thesis presents several contributions that advance the state-of-the-art in this area, relating to the design of miniaturized WSN antennas and the development of antenna tuning solutions for BSN applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the results of the on-body experimental tests of a set of four planar differential antennas, originated by design variations of radiating elements with the same shape and characterized by the potential for covering wide and narrow bands. All the antenna designs have been implemented on low-cost FR4 substrate and characterized experimentally through on-body measurements. The results show the impact of the proximity to the human body on antenna performance and the opportunities in terms of potential coverage of wide and narrow bands for future ad hoc designs and implementations through wearable substrates targeting on-body and off-body communication and sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamically reconfigurable time-division multiplexing (TDM) dense wavelength division multiplexing (DWDM) long-reach passive optical networks (PONs) can support the reduction of nodes and network interfaces by enabling a fully meshed flat optical core. In this paper we demonstrate the flexibility of the TDM-DWDM PON architecture, which can enable the convergence of multiple service types on a single physical layer. Heterogeneous services and modulation formats, i.e. residential 10G PON channels, business 100G dedicated channel and wireless fronthaul, are demonstrated co-existing on the same long reach TDM-DWDM PON system, with up to 100km reach, 512 users and emulated system load of 40 channels, employing amplifier nodes with either erbium doped fiber amplifiers (EDFAs) or semiconductor optical amplifiers (SOAs). For the first time end-to-end software defined networking (SDN) management of the access and core network elements is also implemented and integrated with the PON physical layer in order to demonstrate two service use cases: a fast protection mechanism with end-to-end service restoration in the case of a primary link failure; and dynamic wavelength allocation (DWA) in response to an increased traffic demand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When miniaturized wireless sensors are placed on or close to the human body, they can experience a significant loss inperformance due to antenna detuning, resulting in degradationof wireless performance as well as decreased battery lifetime.Several antenna tuning technologies have been proposed formobile wireless devices but devices suitable for widespread integration have yet to emerge. This paper highlights the possible advantages of antenna tuning for wearable wireless sensors and presents the design and characterization of a prototype 433MHz tuner module.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, Grant No. 07/CE/11147)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the rapid growth of the Internet and digital communications, the volume of sensitive electronic transactions being transferred and stored over and on insecure media has increased dramatically in recent years. The growing demand for cryptographic systems to secure this data, across a multitude of platforms, ranging from large servers to small mobile devices and smart cards, has necessitated research into low cost, flexible and secure solutions. As constraints on architectures such as area, speed and power become key factors in choosing a cryptosystem, methods for speeding up the development and evaluation process are necessary. This thesis investigates flexible hardware architectures for the main components of a cryptographic system. Dedicated hardware accelerators can provide significant performance improvements when compared to implementations on general purpose processors. Each of the designs proposed are analysed in terms of speed, area, power, energy and efficiency. Field Programmable Gate Arrays (FPGAs) are chosen as the development platform due to their fast development time and reconfigurable nature. Firstly, a reconfigurable architecture for performing elliptic curve point scalar multiplication on an FPGA is presented. Elliptic curve cryptography is one such method to secure data, offering similar security levels to traditional systems, such as RSA, but with smaller key sizes, translating into lower memory and bandwidth requirements. The architecture is implemented using different underlying algorithms and coordinates for dedicated Double-and-Add algorithms, twisted Edwards algorithms and SPA secure algorithms, and its power consumption and energy on an FPGA measured. Hardware implementation results for these new algorithms are compared against their software counterparts and the best choices for minimum area-time and area-energy circuits are then identified and examined for larger key and field sizes. Secondly, implementation methods for another component of a cryptographic system, namely hash functions, developed in the recently concluded SHA-3 hash competition are presented. Various designs from the three rounds of the NIST run competition are implemented on FPGA along with an interface to allow fair comparison of the different hash functions when operating in a standardised and constrained environment. Different methods of implementation for the designs and their subsequent performance is examined in terms of throughput, area and energy costs using various constraint metrics. Comparing many different implementation methods and algorithms is nontrivial. Another aim of this thesis is the development of generic interfaces used both to reduce implementation and test time and also to enable fair baseline comparisons of different algorithms when operating in a standardised and constrained environment. Finally, a hardware-software co-design cryptographic architecture is presented. This architecture is capable of supporting multiple types of cryptographic algorithms and is described through an application for performing public key cryptography, namely the Elliptic Curve Digital Signature Algorithm (ECDSA). This architecture makes use of the elliptic curve architecture and the hash functions described previously. These components, along with a random number generator, provide hardware acceleration for a Microblaze based cryptographic system. The trade-off in terms of performance for flexibility is discussed using dedicated software, and hardware-software co-design implementations of the elliptic curve point scalar multiplication block. Results are then presented in terms of the overall cryptographic system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technological role of handheld devices is fundamentally changing. Portable computers were traditionally application specific. They were designed and optimised to deliver a specific task. However, it is now commonly acknowledged that future handheld devices need to be multi-functional and need to be capable of executing a range of high-performance applications. This thesis has coined the term pervasive handheld computing systems to refer to this type of mobile device. Portable computers are faced with a number of constraints in trying to meet these objectives. They are physically constrained by their size, their computational power, their memory resources, their power usage, and their networking ability. These constraints challenge pervasive handheld computing systems in achieving their multi-functional and high-performance requirements. This thesis proposes a two-pronged methodology to enable pervasive handheld computing systems meet their future objectives. The methodology is a fusion of two independent and yet complementary concepts. The first step utilises reconfigurable technology to enhance the physical hardware resources within the environment of a handheld device. This approach recognises that reconfigurable computing has the potential to dynamically increase the system functionality and versatility of a handheld device without major loss in performance. The second step of the methodology incorporates agent-based middleware protocols to support handheld devices to effectively manage and utilise these reconfigurable hardware resources within their environment. The thesis asserts the combined characteristics of reconfigurable computing and agent technology can meet the objectives of pervasive handheld computing systems.