6 resultados para Reactions of (Anthracen-9-yl)methylsulphanes with DMAD
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Intramolecular C–H insertion reactions of α-diazocarbonyl compounds typically proceed with preferential five-membered ring formation. However, the presence of a heteroatom such as nitrogen can activate an adjacent C–H site toward insertion resulting in regiocontrol issues. In the case of α-diazoacetamide derivatives, both β- and γ-lactam products are possible owing to this activating effect. Both β- and γ-lactam products are powerful synthetic building blocks in the area of organic synthesis, as well as a common scaffold in a range of natural and pharmaceutical products and therefore C–H insertion reactions to form such compounds are attractive processes.
Resumo:
The research described in this thesis focuses, principally, on synthesis of stable α-diazosulfoxides and investigation of their reactivity under various reaction conditions (transition-metal catalysed, photochemical, thermal and microwave) with a particular emphasis on the reactive intermediates and mechanistic aspects of the reaction pathways involved. In agreement with previous studies carried out on these compounds, the key reaction pathway of α-diazosulfoxides was found to be hetero-Wolff rearrangement to give α-oxosulfine intermediates. However, a competing reaction pathway involving oxygen migration from sulfur to oxygen was also observed. Critically, isomerisation of α-oxosulfine stereoisomers was observed directly by 1H NMR spectroscopy in this work and this observation accounts for the stereochemical outcomes of the various cycloaddition reactions, whether carried out with in situ trapping or with preformed solutions of sulfines. Furthermore, matrix isolation experiments have shown that electrocyclisation of α-oxosulfines to oxathiiranes takes place and this verifies the proposed mechanisms for enol and disulfide formation. The introductory chapter includes a brief literature review of the synthesis and reactivity of α-diazosulfoxides prior to the commencement of research in this field by the Maguire group. The Wolff rearrangement is also discussed and the characteristic reactions of a number of reactive intermediates (sulfines, sulfenes and oxathiiranes) are outlined. The use of microwave-assisted organic synthesis is also examined, specifically, in the context of α-diazocarbonyl compounds as substrates. The second chapter describes the synthesis of stable monocyclic and bicyclic lactone derivatives of α-diazosulfoxides from sulfide precursors according to established experimental procedures. Approaches to precursors of ketone and sulfimide derivatives of α-diazosulfoxides are also described. The third chapter examines the reactivity of α-diazosulfoxides under thermal, microwave, rhodium(II)-catalysed and photochemical conditions. Comparison of the results obtained under thermal and microwave conditions indicates that there was no evidence for any effect, other than thermal, induced by microwave irradiation. The results of catalyst studies involving several rhodium(II) carboxylate and rhodium(II) carboxamidate catalysts are outlined. Under photochemical conditions, sulfur extrusion is a significant reaction pathway while under thermal or transition metal catalysed conditions, oxygen extrusion is observed. One of the most important observations in this work was the direct spectroscopic observation (by 1H NMR) of interconversion of the E and Z-oxosulfines. Trapping of the α-oxosulfine intermediates as cycloadducts by reaction with 2,3-dimethyl-1,3-butadiene proved useful both synthetically and mechanistically. As the stereochemistry of the α-oxosulfine is retained in the cycloadducts, this provided an ideal method for characterisation of this key feature. In the case of one α-oxosulfine, a novel [2+2] cycloaddition was observed. Preliminary experiments to investigate the reactivity of an α-diazosulfone under rhodium(II) catalysis and microwave irradiation are also described. The fourth chapter describes matrix isolation experiments which were carried out in Rühr Universität, Bochum in collaboration with Prof. Wolfram Sander. These experiments provide direct spectroscopic evidence of an α-oxosulfine intermediate formed by hetero-Wolff rearrangement of an α-diazosulfoxide and subsequent cyclisation of the sulfine to an oxathiirane was also observed. Furthermore, it was possible to identify which stereoisomer of the α-oxosulfine was present in the matrix. A preliminary laser flash photolysis experiment is also discussed. The experimental details, including all spectral and analytical data, are reported at the end of each chapter. The structural interpretation of 1H NMR spectra of the cycloadducts, described in Chapter 3, is discussed in Appendix I.
Resumo:
Chapter 1 of this thesis is a brief introduction to the preparation and reactions of α-diazocarbonyl compounds, with particular emphasis on the areas relating to the research undertaken: C-H insertion, addition to aromatics, and oxonium ylide generation and rearrangement. A short summary of catalyst development illustrates the importance of rhodium(II)carboxylates for α-diazocarbonyl decomposition. Chapter 2 describes intramolecular C-H insertion reactions of α-diazo-β-keto sulphones to form substituted cyclopentanones. Rhodium(II) carboxylates derived from homochiral carboxylic acids were used as catalysts in these reactions and enantioselection achieved through their use is discussed. Chapter 3 describes intramolecular Buchner cyclisation of aryl diazoketones with emphasis on the stereochemical aspects of the cyclisation and subsequent reaction of the bicyclo[5.3.0]decatrienones produced. The partial asymmetric synthesis achieved through use of chiral rhodium(II) carboxylates as catalysts is discussed. The application of the intramolecular Buchner reaction to the synthesis of hydroazulene lactones is illustrated. Chapter 4 demonstrates oxonium ylide formation and rearrangement in the decomposition of an α-diazoketone. The consequences of the use of chiral rhodium(II) carboxylates as catalysts are described. Particularly significant was the discovery that rhodium(II) (S)-mandelate acts as a very efficient catalyst for α-diazoketone decompositions, in general. Moderate asymmetric induction was possible in the decomposition of α-diazoketones with chiral rhodium(II) carboxylates, with rhodium(II) (S)-mandelate being one of the more enantioselective catalysts investigated. However, the asymmetric induction obtained was very dependent on the exact structure of the α-diazoketone, the catalyst, and the nature of the reaction. Chapter 5 contains the experimental details, and the spectral and analytical data for all new compounds reported.
Resumo:
The aim of this thesis was to investigate the high prevalence of Clostridium difficile in patients with cystic fibrosis (CF), and to control its dissemination. To determine the carriage rate of C. difficile in CF patients, 60 patients were tested for C. difficile and its toxin. In total, 50% of patients were found to be asymptomatic carriers of C. difficile despite toxin being detected in 31.66% of patients. Ribotyping of the C. difficile isolates revealed 16 distinct ribotypes, including the hyper virulent RT078. All isolates were sensitive to both Vancomycin and Metronidazole. The effect of CF and its treatment on the gut microbiota of CF patients was assessed by 16s sequencing of the gut microbiota of 68 CF patients. When compared to a healthy control group, CF patient gut microbiota was found to be less diverse and had an increased Firmicutes to Bacteriodetes ratio. Interestingly, CF patients who were carriers of C. difficile had a less diverse gut microbiota than C. difficile negative CF patients. Multilocus sequence typing was found to be comparable to PCR-ribotyping for typing C. difficile isolates from high risk patient groups. The sequence type ST 26 is potentially associated with CF patients as all seven isolates were found in this group and this sequence type has been previously reported in CF patients in a geographically distinct study. The bacteriophage ФCD6356 was assessed as a targeted antimicrobial against C. difficile in an ex-vivo model of the human distal colon. Despite reducing viable C. difficile by 1.75 logs over 24 hours, this bacteriophage was not suitable due to its lysogenic nature. Following treatment, all surviving C. difficile were immune to reinfection due to prophage integration. However, the ФCD6356 encoded endolysin was capable of reducing viable C. difficile by 2.9 over 2 hours in vitro after being cloned and expressed in Escherichia coli.
Resumo:
This thesis describes a systematic investigation of the mechanistic and synthetic aspects of intramolecular reactions of a series of α-diazo-β-oxo sulfone derivatives using copper and, to a lesser extent, rhodium catalysts. The key reaction pathways explored were C–H insertion and cyclopropanation, with hydride transfer competing in certain instances. Significantly, up to 98% ee has been achieved in the C–H insertion processes using copper-NaBARF-bisoxazoline catalysts, with the presence of the additive NaBARF critical to the efficiency of the transformations. This novel synthetic methodology provides access to a diverse range of enantioenriched heterocyclic compounds including thiopyrans, sulfolanes, β- and γ-lactams, in addition to carbocycles such as fused cyclopropanes. The synthesis of the α-diazosulfones required for subsequent investigations is initially described. Of the twenty seven diazo sulfones described, nineteen are novel and are fully characterised in this work. The discussion is subsequently focused on a study of the copper and rhodium catalysed reactions of the α-diazosulfones with Chapter Four concentrated on highly enantioselective C–H insertion to form thiopyrans and sufolanes, Chapter Five focused on C–H insertion to form fused sulfolanes, Chapter Six focused on C–H insertion in sulfonyl α-diazoamides where both lactam formation and / or thiopyran / sulfolane formation can result from competing C–H insertion pathways, while Chapter Seven focuses on cyclopropanation to yield fused cyclopropane derviatives. One of the key outcomes of this work is an insight into the steric and / or electronic factors on both the substrate and the catalyst which control regio-, diastereo- and enantioselectivity patterns in these synthetically powerful transformations. Full experimental details for the synthesis and spectral characterisation of the compounds are included at the end of each Chapter, with details of chiral stationary phase HPLC analysis and assignment of absolute stereochemistry included in the appendix.
Resumo:
Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs.