3 resultados para Rapid Weight Gain

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia represents one of the world’s most devastating illnesses due to its often lifelong course and debilitating nature. The treatment of schizophrenia has vastly improved over recent decades with the discovery of several antipsychotic compounds; however these drugs are not without adverse effects that must be addressed to maximize their therapeutic value. Newer, atypical, antipsychotics are associated with a compilation of serious metabolic side effects including weight gain, insulin resistance, fat deposition, glucose dysregulation and ensuing co-morbidities such as type II diabetes mellitus. The mechanisms underlying these side effects remain to be fully elucidated and adequate interventions are lacking. Further understanding of the factors that contribute these side effects is therefore required in order to develop effective adjunctive therapies and to potentially design antipsychotic drugs in the future with reduced impact on the metabolic health of patients. We investigated if the gut microbiota represented a novel mechanism contributing to the metabolic dysfunction associated with atypical antipsychotics. The gut microbiota comprises the bacteria that exist symbiotically within the gastrointestinal tract, and has been shown in recent years to be involved in several aspects of energy balance and metabolism. We have demonstrated that administration of certain antipsychotics in the rat results in an altered microbiota profile and, moreover, that the microbiota is required for the full scale of metabolic dysfunction to occur. We have further shown that specific antibiotics can attenuate certain aspects of olanzapine and risperidone–induced metabolic dysfunction, in particular fat deposition and adipose tissue inflammation. Mechanisms underlying this novel link appear to involve energy utilization via expression of lipogenic genes as well as reduced inflammatory tone. Taken together, these data indicate that the gut microbiota is an important factor involved in the myriad of metabolic complications associated with antipsychotic therapy. Furthermore, these data support the future investigation of microbial-based therapeutics for not only antipsychotic-induced weight gain but also for tackling the global obesity epidemic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is presented in two parts. Data for this research is from the Cork BASELINE (Babies after SCOPE, Evaluating Longitudinal Impact using Neurological and Nutritional Endpoints) Birth Cohort Study (n = 2137). In this prospective birth cohort study, pediatric follow-up with in-person appointments were repeated from the time of birth through to 2, 6 and 12 months, and at 2 years. Body composition was measured by air displacement plethysmography at birth and at 2 months using the PEA POD Infant Body Composition Tracking System. This thesis provides the first extensive report on the study’s 2 year assessment. In part one, the aims were to investigate potential early-life risk factors for childhood overweight and obesity, including rapid growth and body composition in infancy and umbilical cord concentrations of leptin and high molecular weight (HMW) adiponectin. This research is the first to describe rapid growth in early infancy in terms of changes in direct measures of body composition. These are also the first data to examine associations between umbilical cord leptin and HMW adiponectin concentrations and changes in fat and lean mass in early infancy. These data provide additional insight into characterising the growth trajectory in infancy and into the role of perinatal factors in determining infant growth and subsequent overweight/obesity risk. In part two of this thesis, the aims were to quantify vitamin D intake and status at 2 years and to investigate whether 25-hydroxyvitamin D [25(OH)D] concentrations in early pregnancy and in umbilical cord blood are associated with infant growth and body composition. There was a low prevalence of vitamin D deficiency among Irish 2 year olds (n = 742) despite a high prevalence of inadequate intakes and high latitude (51°N). Maternal 25(OH)D concentrations at 15 weeks gestation and cord 25(OH)D concentrations at delivery were not associated with infant growth or adiposity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using C57BL/6J mice fed whey protein isolate (WPI) enriched high fat (HFD) or low-fat diets (LFD), this study tested the hypothesis that WPI directly impacts on adiposity by influencing lipid metabolism. WPI suppressed HFD-induced body fat and increased lean mass at 8 weeks of dietary challenge despite elevated plasma triacylglycerol (TAG) levels, suggesting reduced TAG storage. WPI reduced HFD-associated hypothalamic leptin and insulin receptor (IR) mRNA expression, and prevented HFD-associated reductions in adipose tissue IR and glucose transporter 4 expression. These effects were largely absent at 21 weeks of HFD feeding, however WPI increased lean mass and cause a trend towards decreased fat mass, with notable increased Lactobacillus and decreased Clostridium gut bacterial species. Increasing the protein to carbohydrate ratio enhanced the above effects, and shifted the gut microbiota composition away from the HFD group. Seven weeks of WPI intake with a LFD decreased insulin signalling gene expression in the adipose tissue in association with an increased fat accumulation. WPI reduced intestinal weight and length, suggesting a potential functional relationship between WPI, gastro-intestinal morphology and insulin related signalling in the adipose. Extending the study to 15 weeks, did not affect adipose fat weight, but decreased energy intake, weight gain and intestinal length. The functionality of protein sensing lysophosphatidic acid receptor 5 (LPA5) in 3T3-L1 pre-adipocytes was assessed. Over-expression of the receptor in 3T3-L1 pre-adipocytes provided a growth advantage to the cells and suppressed cellular differentiation into mature fat cells. In conclusion, the data demonstrates WPI impacts on adiposity by influencing lipid metabolism in a temporal manner, resulting possibly due to changes in lean mass, hypothalamic and adipose gene expression, gut microbiota and gastrointestinal morphology. The data also showed LPA5 is a novel candidate in regulating of preadipocyte growth and differentiation, and may mediate dietary protein effects on adipose tissue.