2 resultados para Radio in agriculture.
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Over the last 30 years, western European Song Thrush populations have declined with the steepest decline recorded on British farmland. Changes in agricultural practices have been implicated in these population declines. Ireland is an agriculturally dominated landscape but changes in agriculture here have occurred on a relatively slower rate and scale. Little is known about the ecology of the Song Thrush in Ireland, even though it is not classified as a species of conservation concern here. Some decline is thought to have occurred but the current breeding population appears to be stable and widespread. In light of these facts, this study investigated various aspects of Song Thrush ecology in relation to the Irish landscape from 2001-2003. The breeding season extended from mid March to late June, where mean clutch size was 4.1 and number of fledglings was 3.7. There were very few third broods. Daily nest survival rates were calculated for egg stage 0.9362, incubation stage 0.9505 and nestling stage 0.6909. Most nest failures were due to avian predation at both egg and chick stages. Most nests were located 1.3 -2.4m from the ground at trees, bushes or hedgerow. Clutch size was significantly higher on farmland than garden & parkland and woodland, and the number of fledglings was significantly lower in nests in trees than hedgerow and bush sites. Daily nest fail rates were significantly higher at tree sites and partly concealed nests. Nesting areas had significantly denser vertical vegetation than non-nesting areas. Mercury and the organochlorine HEOD were the most common contaminants in Song Thrush eggs and livers. However concentrations and occurrence were low and of no apparent biological or ecological concern. The presence of breeding Song Thrushes was influenced by mixed surrounding farmland, the absence of grass surrounding farmland, ditches especially wet ones, tall dense vegetation and trimmed boundaries. Song Thrush winter densities were predicted by ditches, with wet or dry, low thin vegetation and untrimmed boundaries. Winter densities were almost double that of the breeding season, probably due to the arrival and passage of migrating Song Thrushes through the country, especially in November. Changes in Irish agriculture did not differ significantly in areas of Song Thrush breeding population stability and apparent decline during 1970 1990. Even though the current breeding population heavily uses farmland, woodland, human and scrub habitats are more preferred. Nevertheless no farmland habitat was avoided, highlighting a positive relationship between breeding Song Thrushes and Irish agriculture. This appears to be in contrast with findings between breeding Song Thrushes and British agriculture. Theses findings are compared with other studies and possible influences by agricultural intensification, climate, latitude and insular syndrome are discussed. Implications for conservation measures are considered, especially for areas of decline. Even though Song Thrushes are currently widespread and stable here, future environmental consequences of longer-term changes in Irish agriculture and perhaps climate change remain to be seen.
Resumo:
This thesis investigates the optimisation of Coarse-Fine (CF) spectrum sensing architectures under a distribution of SNRs for Dynamic Spectrum Access (DSA). Three different detector architectures are investigated: the Coarse-Sorting Fine Detector (CSFD), the Coarse-Deciding Fine Detector (CDFD) and the Hybrid Coarse-Fine Detector (HCFD). To date, the majority of the work on coarse-fine spectrum sensing for cognitive radio has focused on a single value for the SNR. This approach overlooks the key advantage that CF sensing has to offer, namely that high powered signals can be easily detected without extra signal processing. By considering a range of SNR values, the detector can be optimised more effectively and greater performance gains realised. This work considers the optimisation of CF spectrum sensing schemes where the security and performance are treated separately. Instead of optimising system performance at a single, constant, low SNR value, the system instead is optimised for the average operating conditions. The security is still provided such that at the low SNR values the safety specifications are met. By decoupling the security and performance, the system’s average performance increases whilst maintaining the protection of licensed users from harmful interference. The different architectures considered in this thesis are investigated in theory, simulation and physical implementation to provide a complete overview of the performance of each system. This thesis provides a method for estimating SNR distributions which is quick, accurate and relatively low cost. The CSFD is modelled and the characteristic equations are found for the CDFD scheme. The HCFD is introduced and optimisation schemes for all three architectures are proposed. Finally, using the Implementing Radio In Software (IRIS) test-bed to confirm simulation results, CF spectrum sensing is shown to be significantly quicker than naive methods, whilst still meeting the required interference probability rates and not requiring substantial receiver complexity increases.