4 resultados para RIBOSOMAL-RNA GENES
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Resumo:
Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising similar to ∼60% and similar to ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (similar to ∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising similar to ∼88% and similar to ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (similar to ∼0.2% and similar to ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.
Resumo:
Background: Disease flares of established atopic dermatitis (AD) are generally associated with a low-diversity skin microbiota and Staphylococcus aureus dominance. The temporal transition of the skin microbiome between early infancy and the dysbiosis of established AD is unknown. Methods: We randomly selected 50 children from the Cork Babies After SCOPE: Evaluating the Longitudinal Impact Using Neurological and Nutritional Endpoints (BASELINE) longitudinal birth cohort for microbiome sampling at 3 points in the first 6 months of life at 4 skin sites relevant to AD: the antecubital and popliteal fossae, nasal tip, and cheek. We identified 10 infants with AD and compared them with 10 randomly selected control infants with no AD. We performed bacterial 16S ribosomal RNA sequencing and analysis directly from clinical samples. Results: Bacterial community structures and diversity shifted over time, suggesting that age strongly affects the skin microbiome in infants. Unlike established AD, these patients with infantile AD did not have noticeably dysbiotic communities before or with disease and were not colonized by S aureus. In comparing patients and control subjects, infants who had affected skin at month 12 had statistically significant differences in bacterial communities on the antecubital fossa at month 2 compared with infants who were unaffected at month 12. In particular, commensal staphylococci were significantly less abundant in infants affected at month 12, suggesting that this genus might protect against the later development of AD. Conclusions: This study suggests that 12-month-old infants with AD were not colonized with S aureus before having AD. Additional studies are needed to confirm whether colonization with commensal staphylococci modulates skin immunity and attenuates development of AD.
Resumo:
Recoding embraces mechanisms that augment the rules of standard genetic decoding. The deviations from standard decoding are often purposeful and their realisation provides diverse and flexible regulatory mechanisms. Recoding events such as programed ribosomal frameshifting are especially plentiful in viruses. In most organisms only a few cellular genes are known to employ programed ribosomal frameshifting in their expression. By far the most prominent and therefore well-studied case of cellular +1 frameshifting is in expression of antizyme mRNAs. The protein antizyme is a key regulator of polyamine levels in most eukaryotes with some exceptions such as plants. A +1 frameshifting event is required for the full length protein to be synthesized and this requirement is a conserved feature of antizyme mRNAs from yeast to mammals. The efficiency of the frameshifting event is dependent on the free polyamine levels in the cell. cis-acting elements in antizyme mRNAs such as specific RNA structures are required to stimulate the frameshifting efficiency. Here I describe a novel stimulator of antizyme +1 frameshifting in the Agaricomycotina class of Basidiomycete fungi. It is a nascent peptide that acts from within the ribosome exit tunnel to stimulate frameshifting efficiency in response to polyamines. The interactions of the nascent peptide with components of the peptidyl transferase centre and the protein exit tunnel emerge in our understanding as powerful means which the cell employs for monitoring and tuning the translational process. These interactions can modulate the rate of translation, protein cotranslational folding and localization. Some nascent peptides act in concert with small molecules such as polyamines or antibiotics to stall the ribosome. To these known nascent peptide effects we have added that of a stimulatory effect on the +1 frameshifting in antizyme mRNAs. It is becoming evident that nascent peptide involvement in regulation of translation is a much more general phenomenon than previously anticipated.