1 resultado para RHODOTORULA-GRACILIS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal spoilage of food and feed prevails as a major problem for the food industry. The use antifungal-producing lactic acid bacteria (LAB) may represent a safer, natural alternative to the use of chemical preservatives in foods. A large scale screen was undertaken to identify a variety of LAB with antifungal properties from plant, animal and human sources. A total of 6,720 LAB colonies were isolated and screened for antifungal activity against the indicator Penicillium expansum. 94 broad-spectrum producers were identified through 16S rRNA sequencing with the majority of the population comprising Lactobacillus plantarum isolates. Six broad-spectrum isolates were consequently characterised. Pedicococcus pentosaceous 54 displayed potent anti-mould capabilities in pear, plum and grape models and may represent an ideal candidate for use in the beverage industry. Two antifungal Lb. plantarum isolates were assessed for their technological robustness and potential as biopreservatives in refrigerated foods. Lb. plantarum 16 and 62 displayed high levels of tolerance to freeze-drying, low temperature exposure and high salt concentrations. Both lactobacilli were introduced as supplements into orange juice to retard the growth of the spoilage yeast Rhodotorula mucilaginosa. Furthermore the isolates were applied as adjuncts in yoghurt production to successfully reduce yeast growth. Lb. plantarum 16 proved to be the optimal inhibitor of yeast growth in both food matrices. To date there is limited information available describing the mechanisms behind fungal inhibition by LAB. The effects of concentrated cell-free supernatant (cCFS), derived from Lb. plantarum 16, on the growth of two food-associated moulds was assessed microscopically. cCFS completely inhibited spore, germ tube and hyphal development. A transcriptomic approach was undertaken to determine the impact of antifungal activity on Aspergillus fumigatus Af293. A variety of genes, most notably those involved in cellular metabolism, were found to have their transcription modulated in response to cCFS which is indicative of global cellular shutdown. This study provides the first insights into the molecular targets of antifungal compounds produced by LAB. The genome sequence of the steep water isolate Lb. plantarum 16 was determined. The complete genome of Lb. plantarum16 consists of a single circular chromosome of 3,044,738 base pairs with an average G+C content of 44.74 % in addition to eight plasmids. The genome represents the smallest of this species to date while harbouring the largest plasmid complement. Some features of particular interest include the presence of two prophages, an interrupted plantaricin cluster and a chromosomal and plasmid encoded polysaccharide cluster. The sequence presented here provides a suitable platform for future studies elucidating the mechanisms governing antifungal production.