2 resultados para RHEOMETER

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starches are a source of digestible carbohydrate and are frequently used in formulated food products in the presence of other carbohydrates, proteins and fat. This thesis explored the effect of addition of neutral (Konjac glucomannan) or charged (milk proteins) polymers on the physical characteristics and digestion kinetics of waxy maize starch. The aim was to identify mechanisms to modulate the pasting properties and subsequent susceptibility to amylolytic digestion. Addition of αs- or β-caseinate protein fractions to waxy maize starch restricted granular swelling during gelatinisation, increasing granule integrity. It was shown that, while β-caseinate can adsorb to starch granules during pasting, αscaseinate can be absorbed into maize starch granules. The resultant effect was a reduction in granule size after heating, more intact granules and a subsequent decrease in starch digestion in vitro as determined by analysis of reducing sugars. The ability of αs-caseinate to reduce the level of amylolytic digestion was confirmed through in vivo pig (Teagasc, Moorepark) and human (University of Surrey, UK) trials. The scope of the thesis extended to the development of a new automated cell for attachment to a rheometer to measure digestion kinetics of starch-protein mixtures. In conclusion, the thesis offers new approaches to modulation of the physical characteristics of unmodified starch during gelatinisation and suggests that the type of protein and/or polysaccharide used in starch-based food systems may influence the ability of the food to modulate glycemia. This is an important consideration in the design of foods with positive health benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of unmalted oats or sorghum in brewing has great potential for creating new beer types/flavors and saving costs. However, the substitution of barley malt with oat or sorghum adjunct is not only innovative but also challenging due to their specific grain characteristics. The overall objectives of this Ph.D. project were: 1) to investigate the impact of various types and levels of oats or sorghum on the quality/processability of mashes, worts, and beers; 2) to provide solutions as regards the application of industrial enzymes to overcome potential brewing problems. For these purposes, a highly precise rheological method using a controlled stress rheometer was developed and successfully applied as a tool for optimizing enzyme additions and process parameters. Further, eight different oat cultivars were compared in terms of their suitability as brewing adjuncts and two very promising types identified. In another study, the limitations of barley malt enzymes and the benefits of the application of industrial enzymes in high-gravity brewing with oats were determined. It is recommended to add enzymes to high-gravity mashes when substituting 30% or more barley malt with oats in order to prevent filtration and fermentation problems. Pilot-scale brewing trials using 10–40% unmalted oats revealed that the sensory quality of oat beers improved with increasing adjunct level. In addition, commercially available oat and sorghum flours were implemented into brewing. The use of up to 70% oat flour and 50% sorghum flour, respectively, is not only technically feasible but also economically beneficial. In a further study on sorghum was demonstrated that the optimization of industrial mashing enzymes has great potential for reducing beer production costs. A comparison of the brewing performance of red Italian and white Nigerian sorghum clearly showed that European grown sorghum is suitable for brewing purposes; 40% red sorghum beers were even found to be very low in gluten.