9 resultados para REHABILITATION OF STRUCTURES

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union has expanded significantly in recent years. Sustainable trade within the Union, leading to economic growth to the benefit of the ‘old’ and ‘new’ member states is thus extremely important. The road infrastructure is strategic and vital to such development since an uneven transport infrastructure, in terms of capacity and condition, has the potential to reinforce uneven development trends and hinder economic convergence of old and new member states. In the decades since their design and construction, loading conditions have significantly changed for many major highway infrastructure elements/networks owing primarily to increased freight volumes and vehicle sizes. This, coupled with the gradual deterioration of a significant number of highway structures due to their age, and the absence of a pan-European assessment framework, can be expected to affect the smooth functioning of the infrastructure in its as-built condition. Increased periods of reduced flow can be expected owing to planned and unplanned interventions for repair/rehabilitation. This paper reports the findings of a survey regarding the current status of the highway infrastructure elements in six countries within the European Union as reported by the owners/operators. The countries surveyed include a cross-section of ‘existing’ older countries and ‘new’ member states. The current situations for bridges, culverts, tunnels and retaining walls are reported, along with their potential replacement costs. The findings act as a departure point for further studies in support of a centralised and/or synchronised EU approach to infrastructure maintenance management. Information in the form presented in this paper is central to any future decision-making frameworks in terms of trade route choice and operations, monetary investment, optimised maintenance, management and rehabilitation of the built infrastructure and the economic integration of the newly joined member states.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The child is the most precious asset and the focal point of development for any country. However, unless children are brought up in a stimulating and conducive environment getting the best possible care and protection, their physical, mental, emotional and social development is susceptible to permanent damage. Ethiopia, being one of the least developed countries of the world due to interrelated and complex socio-economic factors including man-made and natural calamities, a large portion of our population - especially children - are victimized by social evils like famine, disease, poverty, mass displacement, lack of education and family instability. Owing to the fact that children are the most vulnerable group among the whole society and also because they constitute half of the population it is evident that a considerable number of Ethiopian children are living under difficult circumstances. Therefore, as in a number of other third world countries there are many poor, displaced, unaccompanied and orphaned children in our country. A considerable proportion of these children work on the street with some even totally living on the street without any adult care and protection. These children are forced to the streets in their tight for survival. They supplement their parents meagre income or support themselves with the small incomes they earn doing menial jobs. In doing this, street children face the danger of getting into accidents and violence, they get exploited and abused, many are forced to drop out of school or never get the chance to be enroled at all and some drift into begging or petty crime. This study is undertaken mainly for updating the findings of previous studies, monitoring changing trends, examining new facts of the problem and getting a better understanding of the phenomenon in the country by covering at least some of the major centres where the problem is acute. Thus, the outcome of this research can be useful in the formation of the social welfare programme of the country. Finally, in recognition of the urgency of the problem and the limited resources available, the Ministry of Labour and Social Affairs expresses appreciation to all agencies engaged in the rehabilitation of street children and prevention of the problem. The Ministry also calls for more co-operation and support between concerned governmental and non-governmental organizations in their efforts for improving the situation of street children and in curbing the overwhelming nature of the problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sudden changes in the stiffness of a structure are often indicators of structural damage. Detection of such sudden stiffness change from the vibrations of structures is important for Structural Health Monitoring (SHM) and damage detection. Non-contact measurement of these vibrations is a quick and efficient way for successful detection of sudden stiffness change of a structure. In this paper, we demonstrate the capability of Laser Doppler Vibrometry to detect sudden stiffness change in a Single Degree Of Freedom (SDOF) oscillator within a laboratory environment. The dynamic response of the SDOF system was measured using a Polytec RSV-150 Remote Sensing Vibrometer. This instrument employs Laser Doppler Vibrometry for measuring dynamic response. Additionally, the vibration response of the SDOF system was measured through a MicroStrain G-Link Wireless Accelerometer mounted on the SDOF system. The stiffness of the SDOF system was experimentally determined through calibrated linear springs. The sudden change of stiffness was simulated by introducing the failure of a spring at a certain instant in time during a given period of forced vibration. The forced vibration on the SDOF system was in the form of a white noise input. The sudden change in stiffness was successfully detected through the measurements using Laser Doppler Vibrometry. This detection from optically obtained data was compared with a detection using data obtained from the wireless accelerometer. The potential of this technique is deemed important for a wide range of applications. The method is observed to be particularly suitable for rapid damage detection and health monitoring of structures under a model-free condition or where information related to the structure is not sufficient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although aspects of power generation of many offshore renewable devices are well understood, their dynamic responses under high wind and wave conditions are still to be investigated to a great detail. Output only statistical markers are important for these offshore devices, since access to the device is limited and information about the exposure conditions and the true behaviour of the devices are generally partial, limited, and vague or even absent. The markers can summarise and characterise the behaviour of these devices from their dynamic response available as time series data. The behaviour may be linear or nonlinear and consequently a marker that can track the changes in structural situations can be quite important. These markers can then be helpful in assessing the current condition of the structure and can indicate possible intervention, monitoring or assessment. This paper considers a Delay Vector Variance based marker for changes in a tension leg platform tested in an ocean wave basin for structural changes brought about by single column dampers. The approach is based on dynamic outputs of the device alone and is based on the estimation of the nonlinearity of the output signal. The advantages of the selected marker and its response with changing structural properties are discussed. The marker is observed to be important for monitoring the as- deployed structural condition and is sensitive to changes in such conditions. Influence of exposure conditions of wave loading is also discussed in this study based only on experimental data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the importance of renewable energy well-established worldwide, and targets of such energy quantified in many cases, there exists a considerable interest in the assessment of wind and wave devices. While the individual components of these devices are often relatively well understood and the aspects of energy generation well researched, there seems to be a gap in the understanding of these devices as a whole and especially in the field of their dynamic responses under operational conditions. The mathematical modelling and estimation of their dynamic responses are more evolved but research directed towards testing of these devices still requires significant attention. Model-free indicators of the dynamic responses of these devices are important since it reflects the as-deployed behaviour of the devices when the exposure conditions are scaled reasonably correctly, along with the structural dimensions. This paper demonstrates how the Hurst exponent of the dynamic responses of a monopile exposed to different exposure conditions in an ocean wave basin can be used as a model-free indicator of various responses. The scaled model is exposed to Froude scaled waves and tested under different exposure conditions. The analysis and interpretation is carried out in a model-free and output-only environment, with only some preliminary ideas regarding the input of the system. The analysis indicates how the Hurst exponent can be an interesting descriptor to compare and contrast various scenarios of dynamic response conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tuned liquid column dampers have been proved to be successful in mitigating the dynamic responses of civil infrastructure. There have been some recent applications of this concept on wind turbines and this passive control system can help to mitigate responses of offshore floating platforms and wave devices. The control of dynamic responses of these devices is important for reducing loads on structural elements and facilitating operations and maintenance (O&M) activities. This paper outlines the use of a tuned single liquid column damper for the control of a tension leg platform supported wind turbine. Theoretical studies were carried out and a scaled model was tested in a wave basin to assess the performance of the damper. The tests on the model presented in this paper correspond to a platform with a very low natural frequency for surge, sway and yaw motions. For practical purposes, it was not possible to tune the liquid damper exactly to this frequency. The consequent approach taken and the efficiency of such approach are presented in this paper. Responses to waves of a single frequency are investigated along with responses obtained from wave spectra characterising typical sea states. The extent of control is quantified using peak and root mean squared dynamic responses respectively. The tests present some guidelines and challenges for testing scaled devices in relation to including response control mechanisms. Additionally, the results provide a basis for dictating future research on tuned liquid column damper based control on floating platforms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of vehicle speed for Structural Health Monitoring (SHM) of bridges under operational conditions are studied in this paper. The moving vehicle is modelled as a single degree oscillator traversing a damaged beam at a constant speed. The bridge is modelled as simply supported Euler-Bernoulli beam with a breathing crack. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness of the bridge deck is modelled using road classification according to ISO 8606:1995(E). The stochastic description of the unevenness of the road surface is used as an aid to monitor the health of the structure in its operational condition. Numerical simulations are conducted considering the effects of changing vehicle speed with regards to cumulant based statistical damage detection parameters. The detection and calibration of damage at different levels is based on an algorithm dependent on responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. Sensitivity of calibration values is studied. The findings of this paper are important for establishing the expectations from different vehicle speeds on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring. The identification of bunching of these speed ranges provides guidelines for using the methodology developed in the paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of structural health monitoring of civil structures is ever expanding and by assessing the dynamical condition of structures, informed maintenance management can be conducted at both individual and network levels. With the continued growth of information age technology, the potential arises for smart monitoring systems to be integrated with civil infrastructure to provide efficient information on the condition of a structure. The focus of this thesis is the integration of smart technology with civil infrastructure for the purposes of structural health monitoring. The technology considered in this regard are devices based on energy harvesting materials. While there has been considerable focus on the development and optimisation of such devices using steady state loading conditions, their applications for civil infrastructure are less known. Although research is still in initial stages, studies into the uses associated with such applications are very promising. Through the use of the dynamical response of structures to a variety of loading conditions, the energy harvesting outputs from such devices is established and the potential power output determined. Through a power variance output approach, damage detection of deteriorating structures using the energy harvesting devices is investigated. Further applications of the integration of energy harvesting devices with civil infrastructure investigated by this research includes the use of the power output as a indicator for control. Four approaches are undertaken to determine the potential applications arising from integrating smart technology with civil infrastructure, namely • Theoretical analysis to determine the applications of energy harvesting devices for vibration based health monitoring of civil infrastructure. • Laboratory experimentation to verify the performance of different energy harvesting configurations for civil infrastructure applications. • Scaled model testing as a method to experimentally validate the integration of the energy harvesting devices with civil infrastructure. • Full scale deployment of energy harvesting device with a bridge structure. These four approaches validate the application of energy harvesting technology with civil infrastructure from a theoretical, experimental and practical perspective.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

HIV-1 reverse transcriptase (RT) catalytically incorporates individual nucleotides into a viral DNA strand complementing an RNA or DNA template strand; the polymerase active site of RT adopts multiple conformational and structural states while performing this task. The states associated are dNTP binding at the N site, catalytic incorporation of a nucleotide, release of a pyrophosphate, and translocation of the primer 3′-end to the P site. Structural characterization of each of these states may help in understanding the molecular mechanisms of drug activity and resistance and in developing new RT inhibitors. Using a 38-mer DNA template-primer aptamer as the substrate mimic, we crystallized an RT/dsDNA complex that is catalytically active, yet translocation-incompetent in crystals. The ability of RT to perform dNTP binding and incorporation in crystals permitted obtaining a series of structures: (I) RT/DNA (P-site), (II) RT/DNA/AZTTP ternary, (III) RT/AZT-terminated DNA (N-site), and (IV) RT/AZT-terminated DNA (N-site)/foscarnet complexes. The stable N-site complex permitted the binding of foscarnet as a pyrophosphate mimic. The Mg2+ ions dissociated after catalytic addition of AZTMP in the pretranslocated structure III, whereas ions A and B had re-entered the active site to bind foscarnet in structure IV. The binding of foscarnet involves chelation with the Mg2+ (B) ion and interactions with K65 and R72. The analysis of interactions of foscarnet and the recently discovered nucleotide-competing RT inhibitor (NcRTI) α-T-CNP in two different conformational states of the enzyme provides insights for developing new classes of polymerase active site RT inhibitors.