6 resultados para REFRACTORY CASTABLES
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada’s CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability to better understand the chemical nature of atypical factors from high resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably re-solved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.
Resumo:
Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults. Its treatment has remained largely unchanged for the past 30 years. Chronic myeloid leukaemia (CML) represents a tremendous success story in the era of targeted therapy but significant challenges remain including the development of drug resistance and disease persistence due to presence of CML stem cells. The Aurora family of kinases is essential for cell cycle regulation and their aberrant expression in cancer prompted the development of small molecules that selectively inhibit their activity. Chapter 2 of this thesis outlines the efficacy and mechanism of action of alisertib, a novel inhibitor of Aurora A kinase, in preclinical models of CML. Alisertib possessed equipotent activity against CML cells expressing unmutated and mutated forms of BCR-ABL. Notably, this agent retained high activity against the T315I and E255K BCR-ABL mutations, which confer the greatest degree of resistance to standard CML therapy. Chapter 3 explores the activity of alisertib in preclinical models of AML. Alisertib disrupted cell viability, diminished clonogenic survival, induced expression of the forkhead box O3 (FOXO3a) targets p27 and BCL-2 interacting mediator (BIM), and triggered apoptosis. A link between Aurora A expression and sensitivity to ara-C was established. Chapter 4 outlines the role of the proto-oncogene serine/threonine-protein (PIM) kinases in resistance to ara-C in AML. We report that the novel small molecule PIM kinase inhibitor SGI-1776 disrupted cell viability and induced apoptosis in AML. We establish a link between ara-C resistance and PIM over-expression. Finally, chapter 5 explores how the preclinical work outlined in this thesis may be translated into clinical studies that may lead to novel therapeutic approaches for patients with refractory myeloid leukaemia.
Resumo:
Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).
Resumo:
As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm(-3), while background marine air aerosol concentrations were between 400-600 cm(-3). The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm(-3), was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were highest in marine tropical air - even higher than in continental air. MSA was present at twice the concentrations of previously-reported concentrations at the same location and the same season. Both continental and marine air exhibited aerosol GFs significantly less than ammonium sulphate aerosol pointing to a significant organic contribution to all air mass aerosol properties.
Resumo:
Understanding the impact of atmospheric black carbon (BC) containing particles on human health and radiative forcing requires knowledge of the mixing state of BC, including the characteristics of the materials with which it is internally mixed. In this study, we demonstrate for the first time the capabilities of the Aerodyne Soot-Particle Aerosol Mass Spectrometer equipped with a light scattering module (LS-SP-AMS) to examine the mixing state of refractory BC (rBC) and other aerosol components in an urban environment (downtown Toronto). K-means clustering analysis was used to classify single particle mass spectra into chemically distinct groups. One resultant cluster is dominated by rBC mass spectral signals (C+1 to C+5) while the organic signals fall into a few major clusters, identified as hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), and cooking emission organic aerosol (COA). A nearly external mixing is observed with small BC particles only thinly coated by HOA ( 28% by mass on average), while over 90% of the HOA-rich particles did not contain detectable amounts of rBC. Most of the particles classified into other inorganic and organic clusters were not significantly associated with BC. The single particle results also suggest that HOA and COA emitted from anthropogenic sources were likely major contributors to organic-rich particles with low to mid-range aerodynamic diameter (dva). The similar temporal profiles and mass spectral features of the organic clusters and the factors from a positive matrix factorization (PMF) analysis of the ensemble aerosol dataset validate the conventional interpretation of the PMF results.
Resumo:
Prostate Cancer is a disease that primarily affects elderly men. The incidence of prostate cancer has been progressively increasing in the western world over the last two decades. Life expectancy and diet are believed to be the main factors contributing to this increase in prevalence. Prostate cancer is a slowly progressing disorder and patients often live for over 10 years after initially being diagnosed with prostate cancer. However, patients with hormone refractory prostate cancer have a poor prognosis and generally do not survive for longer than 2 or 3 years. Hormone refractory prostate cancer is responsible for over 200,000 deaths each year and current chemotherapeutic regimens are only useful as palliative agents. The long-term survival rate is poor and chemotherapy does not significantly increase this. Cell lines derived from hormone refractory tumours usually display elevated resistance to many cytotoxic drugs. The Fas receptor is a membrane bound protein capable of binding to a ligand called Fas ligand. Engagement of Fas receptor with Fas ligand results in clustering of Fas receptor on the plasma membrane of cells. A number of proteins responsible for initiating apoptosis are recruited to the plasma membrane and are activated in response to elevated local concentrations. This series of events initiates a proteolysis cascade and that culminates in the degradation of structural and enzymatic processes and the repackaging of cellular constituents within membrane bound vesicles that can be endocytosed and recycled by surrounding phagocytic cells. The Fas receptor is believed to be a key mechanism by which immune cells can destroy damaged cells. Consequently, resistance to Fas receptor mediated apoptosis often correlates with tumour progression. It has been reported that prostate cancer cell lines display elevated resistance to Fas receptor mediated apoptosis and this correlates with the stage of tumour from which the cell lines were isolated. JNK, a stress-activated protein kinase, has been implicated both with increased survival and increased apoptosis in prostate cancer. Elevated endogenous JNK activity has been demonstrated to correlate with prostate cancer progression. It has been shown that endogenous JNK activity increases the expression of anti-apoptotic proteins and can increase the resistance of prostate cancer cell lines to chemotherapy. In addition, elevated endogenous JNK activity is required for improved proliferation and transformation of a number of epithelial tumours. However, prolonged JNK activation in response to cytotoxic stimuli can increase the sensitivity of cells to apoptosis. Prolonged JNK activity appears to induce the expression of a separate set of genes responsible for promoting apoptosis. Our group has recently shown that activation of JNK by chemotherapeutic drugs can sensitise DU 145 prostate carcinoma cells to Fas receptor mediated apoptosis. In order toidentify novel targets for treating hormone refractory prostate cancer we have investigated the role of JNK in Fas receptor mediated apoptosis. We have demonstrated that prolonged JNK activation is defective in DU 145 cells in response to Fas receptor activation alone. Co-administering anisomycin, a JNK agonist, greatly enhances the ability of DU 145 cells to undergo apoptosis by increasing the rate of Caspase 8 cleavage. We also investigated the role of endogenous JNK activity in Fas receptor mediated.