3 resultados para Rúiga (Latvia)--Buildings

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adequate hand-washing has been shown to be a critical activity in preventing the transmission of infections such as MRSA in health-care environments. Hand-washing guidelines published by various health-care related institutions recommend a technique incorporating six hand-washing poses that ensure all areas of the hands are thoroughly cleaned. In this paper, an embedded wireless vision system (VAMP) capable of accurately monitoring hand-washing quality is presented. The VAMP system hardware consists of a low resolution CMOS image sensor and FPGA processor which are integrated with a microcontroller and ZigBee standard wireless transceiver to create a wireless sensor network (WSN) based vision system that can be retargeted at a variety of health care applications. The device captures and processes images locally in real-time, determines if hand-washing procedures have been correctly undertaken and then passes the resulting high-level data over a low-bandwidth wireless link. The paper outlines the hardware and software mechanisms of the VAMP system and illustrates that it offers an easy to integrate sensor solution to adequately monitor and improve hand hygiene quality. Future work to develop a miniaturized, low cost system capable of being integrated into everyday products is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current building regulations are generally prescriptive in nature. It is widely accepted in Europe that this form of building regulation is stifling technological innovation and leading to inadequate energy efficiency in the building stock. This has increased the motivation to move design practices towards a more ‘performance-based’ model in order to mitigate inflated levels of energy-use consumed by the building stock. A performance based model assesses the interaction of all building elements and the resulting impact on holistic building energy-use. However, this is a nebulous task due to building energy-use being affected by a myriad of heterogeneous agents. Accordingly, it is imperative that appropriate methods, tools and technologies are employed for energy prediction, measurement and evaluation throughout the project’s life cycle. This research also considers that it is imperative that the data is universally accessible by all stakeholders. The use of a centrally based product model for exchange of building information is explored. This research describes the development and implementation of a new building energy-use performance assessment methodology. Termed the Building Effectiveness Communications ratios (BECs) methodology, this performance-based framework is capable of translating complex definitions of sustainability for energy efficiency and depicting universally understandable views at all stage of the Building Life Cycle (BLC) to the project’s stakeholders. The enabling yardsticks of building energy-use performance, termed Ir and Pr, provide continuous design and operations feedback in order to aid the building’s decision makers. Utilised effectively, the methodology is capable of delivering quality assurance throughout the BLC by providing project teams with quantitative measurement of energy efficiency. Armed with these superior enabling tools for project stakeholder communication, it is envisaged that project teams will be better placed to augment a knowledge base and generate more efficient additions to the building stock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retrofitting of existing buildings for decreased energy usage, through increased energy efficiency and for minimum carbon dioxide emissions throughout their remaining lifetime is a major area of research. This research area requires development to provide building professionals with more efficient building retrofit solution determination tools. The overarching objective of this research is to develop a tool for this purpose through the implementation of a prescribed methodology. This has been achieved in three distinct steps. Firstly, the concept of using the degree-days modelling method as an adequate means of basing retrofit decision upon was analysed and the results illustrated that the concept had merit. Secondly, the concept of combining the degree-days modelling method and the Genetic Algorithms optimisation method is investigated as a method of determining optimal thermal energy retrofit solutions. Thirdly, the combination of the degree-days modelling method and the Genetic Algorithms optimisation method were packaged into a building retrofit decision-support tool and named BRaSS (Building Retrofit Support Software). The results demonstrate clearly that, fundamental building information, simplified occupancy profiles and weather data used in a static simulation modelling method is a sufficient and adequate means to base retrofitting decisions upon. The results also show that basing retrofit decisions upon energy analysis results are the best means to guide a retrofit project and also to achieve results which are optimum for a particular building. The results also indicate that the building retrofit decision-support tool, BRaSS, is an effective method to determine optimum thermal energy retrofit solutions.