2 resultados para Psp, protein solubility in pepsin

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formulated food systems are becoming more sophisticated as demand grows for the design of structural and nutritional profiles targeted at increasingly specific demographics. Milk protein is an important bio- and techno-functional component of such formulations, which include infant formula, sports supplements, clinical beverages and elderly nutrition products. This thesis outlines research into ingredients that are key to the development of these products, namely milk protein concentrate (MPC), milk protein isolate (MPI), micellar casein concentrate (MCC), β-casein concentrate (BCC) and serum protein concentrate (SPC). MPC powders ranging from 37 to 90% protein (solids basis) were studied for properties of relevance to handling and storage of powders, powder solubilisation and thermal processing of reconstituted MPCs. MPC powders with ≥80% protein were found to have very poor flowability and high compressibility; in addition, these high-protein MPCs exhibited poor wetting and dispersion characteristics during rehydration in water. Heat stability studies on unconcentrated (3.5%, 140°C) and concentrated (8.5%, 120°C) MPC suspensions, showed that suspensions prepared from high-protein MPCs coagulated much more rapidly than lower protein MPCs. β-casein ingredients were developed using membrane processing. Enrichment of β-casein from skim milk was performed at laboratory-scale using ‘cold’ microfiltration (MF) at <4°C with either 1000 kDa molecular weight cut-off or 0.1 µm pore-size membranes. At pilot-scale, a second ‘warm’ MF step at 26°C was incorporated for selective purification of micellised β-casein from whey proteins; using this approach, BCCs with β-casein purity of up to 80% (protein basis) were prepared, with the whey protein purity of the SPC co-product reaching ~90%. The BCC ingredient could prevent supersaturated solutions of calcium phosphate (CaP) from precipitating, although the amorphous CaP formed created large micelles that were less thermo-reversible than those in CaP-free systems. Another co-product of BCC manufacture, MCC powder, was shown to have superior rehydration characteristics compared to traditional MCCs. The findings presented in this thesis constitute a significant advance in the research of milk protein ingredients, in terms of optimising their preparation by membrane filtration, preventing their destabilisation during processing and facilitating their effective incorporation into nutritional formulations designed for consumers of a specific age, lifestyle or health status

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aberrant regulation of the Wnt signalling pathway is a recurrent theme in cancer biology. Hyper activation due to oncogenic mutations and paracrine activity has been found in both colon cancer and breast cancer, and continues to evolve as a central mechanism in oncogenesis. PDLIM2, a cytoskeletal PDZ protein, is an IGF-1 regulated gene that is highly expressed in cancer cell lines derived from metastatic tumours. Suppression of PDLIM2 inhibits polarized cell migration, reverses the Epithelial to Mesenchymal transition (EMT) phenotype, suppresses the transcription of β-catenin target genes, and regulates gene expression of key transcription factors in EMT. This thesis investigates the mechanism by which PDLIM2 contributes to the maintenance of Wnt signalling in cancer cells. Here we show that PDLIM2 is a critical regulator of the Wnt pathway by regulating β-catenin at the adherens juctions, as also its transcriptional activity by the interaction of PDLIM2 with TCF4 at the nucleus. Evaluation of PDLIM2 in macrophages and co-culture studies with cancer cells and fibroblasts showed the influence exerted on PDLIM2 by paracrine cues. Thus, PDLIM2 integrates cytoskeleton signalling with gene expression by modulating the Wnt signalling pathway and reconciling microenvironmental cues with signals in epithelial cells. Negative correlation of mRNA and protein levels in the triple negative breast cancer cell BT549 suggests that PDLIM2 is part of a more complex mechanism that involves transcription and posttranslational modifications. GST pulldown studies and subsequent mass spectrometry analysis showed that PDLIM2 interacts with 300 proteins, with a high biological function in protein biosynthesis and Ubiquitin/proteasome pathways, including 13 E3 ligases. Overall, these data suggest that PDLIM2 has two distinct functions depending of its location. Located at the cytoplasm mediates cytoskeletal re-arrangements, whereas at the nucleus PDLIM2 acts as a signal transduction adaptor protein mediating transcription and ubiquitination of key transcription factors in cancer development.