2 resultados para Proton transfer

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) is a technique for producing conformal layers of nanometre-scale thickness, used commercially in non-planar electronics and increasingly in other high-tech industries. ALD depends on self-limiting surface chemistry but the mechanistic reasons for this are not understood in detail. Here we demonstrate, by first-principle calculations of growth of HfO2 from Hf(N(CH3)2)4–H2O and HfCl4–H2O and growth of Al2O3 from Al(CH3)3–H2O, that, for all these precursors, co-adsorption plays an important role in ALD. By this we mean that previously-inert adsorbed fragments can become reactive once sufficient numbers of molecules adsorb in their neighbourhood during either precursor pulse. Through the calculated activation energies, this ‘cooperative’ mechanism is shown to have a profound influence on proton transfer and ligand desorption, which are crucial steps in the ALD cycle. Depletion of reactive species and increasing coordination cause these reactions to self-limit during one precursor pulse, but to be re-activated via the cooperative effect in the next pulse. This explains the self-limiting nature of ALD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dietary intake of sodium chloride has increased considerably over the last few decades due to changes in the human diet. This higher intake has been linked to a number of diseases including hypertension and other cardiovascular diseases. Numerous international health agencies, as well as the food industry, have now recommended a salt intake level of 5-6 g daily, approximately half of the average current daily intake level. Cereal products, and in particular bread, are a major source of salt in the Western diet. Therefore, any reduction in the level of salt in bread could have a major impact on global health. However, salt is a critical ingredient in bread production, and its reduction can have a deleterious effect on the production process as well as on the final bread quality characteristics such as shelf-life, bread volume and sensory characteristics, all deviating from the bakers’ and consumers’ expectations. This work addresses the feasibility of NaCl reduction in wheat bread focusing on options to compensate NaCl with the use of functional sourdoughs. Three strains were used for the application of low-salt bread; L. amylovorus DSM19280, W. cibaria MG1 and L. reuteri FF2hh2. The multifunctional strain L. reuteri FF2hh2 was tested the first time and its application could be demonstrated successfully. The functionalities were based on the production of exopolysaccharides as well as the production of antifungal compounds. While the exopolysaccharides, mainly high molecular dextrans, positively influenced mainly bread loaf volume, crumb structure and staling rate, the strains producing antifungal compounds prolonged the microbial shelf life significantly and compensated the lack of salt. The impact on the sensory characteristics of bread were evaluated by descriptive sensory evaluation. The increase in surface area as well as the presence of organic acids impacted significantly on the flavour profile of the sourdough bread samples. The flavour attribute “salt” could be enhanced by sourdough addition and increased the salty perception. Furthermore, a trained sensory panel evaluated for the first time the impact of yeast activity, based on different salt and yeast concentrations, on the volatile aroma profile of bread crumb samples. The analytical measurements using high resolution gas chromatography and proton-transfer-reaction mass spectrometry (PTR-MS) resulted in significantly different results based on different yeast activities. Nevertheless, the extent of the result could not be recognised by the sensory panel analysing the odour profile of the bread crumb samples. Hence, the consumer cannot recognised low-salt bread by its odour. The use of sourdough is a natural option to overcome the broad range of technological issues caused by salt reduction and also a more popular alternative compared to existing chemical salt replacers.