15 resultados para Promotional discounts
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background: Dietary behaviour interventions have the potential to reduce diet-related disease. Ample opportunity exists to implement these interventions in the workplace. The overall aim is to assess the effectiveness and cost-effectiveness of complex dietary interventions focused on environmental dietary modification alone or in combination with nutrition education in large manufacturing workplace settings. Methods/design: A clustered controlled trial involving four large multinational manufacturing workplaces in Cork will be conducted. The complex intervention design has been developed using the Medical Research Council's framework and the National Institute for Health and Clinical Excellence (NICE) guidelines and will be reported using the TREND statement for the transparent reporting of evaluations with non-randomized designs. It will draw on a soft paternalistic 'nudge' theoretical perspective. It will draw on a soft paternalistic "nudge" theoretical perspective. Nutrition education will include three elements: group presentations, individual nutrition consultations and detailed nutrition information. Environmental dietary modification will consist of five elements: (a) restriction of fat, saturated fat, sugar and salt, (b) increase in fibre, fruit and vegetables, (c) price discounts for whole fresh fruit, (d) strategic positioning of healthier alternatives and (e) portion size control. No intervention will be offered in workplace A (control). Workplace B will receive nutrition education. Workplace C will receive nutrition education and environmental dietary modification. Workplace D will receive environmental dietary modification alone. A total of 448 participants aged 18 to 64 years will be selected randomly. All permanent, full-time employees, purchasing at least one main meal in the workplace daily, will be eligible. Changes in dietary behaviours, nutrition knowledge, health status with measurements obtained at baseline and at intervals of 3 to 4 months, 7 to 9 months and 13 to 16 months will be recorded. A process evaluation and cost-effectiveness economic evaluation will be undertaken. Discussion: A 'Food Choice at Work' toolbox (concise teaching kit to replicate the intervention) will be developed to inform and guide future researchers, workplace stakeholders, policy makers and the food industry. Trial registration: Current Controlled Trials, ISRCTN35108237.
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic capsules are an example of this. In this paper, a diagnostic capsule technology is described based on direct-access sensing of the Gastro Intestinal (GI) fluids throughout the GI tract. The objective of this paper is two-fold: i) develop a packaging method for a direct access sensor, ii) develop an encapsulation method to protect the system electronics. The integrity of the interconnection after sensor packaging and encapsulation is correlated to its reliability and thus of importance. The zero level packaging of the sensor was achieved by using a so called Flip Chip Over Hole (FCOH) method. This allowed the fluidic sensing media to interface with the sensor, while the rest of the chip including the electrical connections can be insulated effectively. Initial tests using Anisotropic Conductive Adhesive (ACA) interconnect for the FCOH demonstrated good electrical connections and functionality of the sensor chip. Also a preliminary encapsulation trial of the flip chipped sensor on a flexible test substrate has been carried out and showed that silicone encapsulation of the system is a viable option.
Resumo:
Smart hydrogels for biomedical applications are highly researched materials. However, integrating them into a device for implantation is difficult. This paper investigates an integrated delivery device designed to deliver an electro-responsive hydrogel to a target location inside a blood vessel with the purpose of creating an occlusion. The paper describes the synthesis and characterization of a Pluronic/methacrylic acid sodium salt electro-responsive hydrogel. Application of an electrical bias decelerates the expansion of the hydrogel. An integrated delivery system was manufactured to deliver the hydrogel to the target location in the body. Ex vivo and in vivo experiments in the carotid artery of sheep were used to validate the concept. The hydrogel was able to completely occlude the blood vessel reducing the blood flow from 245 to 0 ml/min after implantation. Ex vivo experiments showed that the hydrogel was able to withstand physiological blood pressures of > 270 mm·Hg without dislodgement. The results showed that the electro-responsive hydrogel used in this paper can be used to create a long-term occlusion in a blood vessel without any apparent side effects. The delivery system developed is a promising device for the delivery of electro-responsive hydrogels.
Resumo:
The use of magnets for anchoring of instrumentation in minimally invasive surgery and endoscopy has become of increased interest in recent years. Permanent magnets have significant advantages over electromagnets for these applications; larger anchoring and retraction force for comparable size and volume without the need for any external power supply. However, permanent magnets represent a potential hazard in the operating field where inadvertent attraction to surgical instrumentation is often undesirable. The current work proposes an interesting hybrid approach which marries the high forces of permanent magnets with the control of electromagnetic technology including the ability to turn the magnet OFF when necessary. This is achieved through the use of an electropermanent magnet, which is designed for surgical retraction across the abdominal and gastric walls. Our electropermanent magnet, which is hand-held and does not require continuous power, is designed with a center lumen which may be used for trocar or needle insertion. The device in this application has been demonstrated successfully in the porcine model where coupling between an intraluminal ring magnet and our electropermanent magnet facilitated guided insertion of an 18 Fr Tuohy needle for guidewire placement. Subsequent investigations have demonstrated the ability to control the coupling distance of the system alleviating shortcomings with current methods of magnetic coupling due to variation in transabdominal wall thicknesses. With further refinement, the magnet may find application in the anchoring of endoscopic and surgical instrumentation for minimally invasive interventions in the gastrointestinal tract.
Resumo:
Salutogenesis is now accepted as a part of the contemporary model of disease: an individual is not only affected by pathogenic factors in the environment, but those that promote well-being or salutogenesis. Given that "environment" extends to include the built environment, promotion of salutogenesis has become part of the architectural brief for contemporary healthcare facilities, drawing on an increasing evidence-base. Salutogenesis is inextricably linked with the notion of person-environment "fit". MyRoom is a proposal for an integrated architectural and pervasive computing model, which enhances psychosocial congruence by using real-time data indicative of the individual's physical status to enable the environment of his/her room (colour, light, temperature) to adapt on an on-going basis in response to bio-signals. This work is part of the PRTLI-IV funded programme NEMBES, investigating the use of embedded technologies in the built environment. Different care contexts require variations in the model, and iterative prototyping investigating use in different contexts will progressively lead to the development of a fully-integrated adaptive salutogenic single-room prototype.
Resumo:
The primary objective is to investigate the main factors contributing to GMS expenditure on pharmaceutical prescribing and projecting this expenditure to 2026. This study is located in the area of pharmacoeconomic cost containment and projections literature. The thesis has five main aims: 1. To determine the main factors contributing to GMS expenditure on pharmaceutical prescribing. 2. To develop a model to project GMS prescribing expenditure in five year intervals to 2026, using 2006 Central Statistics Office (CSO) Census data and 2007 Health Service Executive{Primary Care Reimbursement Service (HSE{PCRS) sample data. 3. To develop a model to project GMS prescribing expenditure in five year intervals to 2026, using 2012 HSE{PCRS population data, incorporating cost containment measures, and 2011 CSO Census data. 4. To investigate the impact of demographic factors and the pharmacology of drugs (Anatomical Therapeutic Chemical (ATC)) on GMS expenditure. 5. To explore the consequences of GMS policy changes on prescribing expenditure and behaviour between 2008 and 2014. The thesis is centered around three published articles and is located between the end of a booming Irish economy in 2007, a recession from 2008{2013, to the beginning of a recovery in 2014. The literature identified a number of factors influencing pharmaceutical expenditure, including population growth, population aging, changes in drug utilisation and drug therapies, age, gender and location. The literature identified the methods previously used in predictive modelling and consequently, the Monte Carlo Simulation (MCS) model was used to simulate projected expenditures to 2026. Also, the literature guided the use of Ordinary Least Squares (OLS) regression in determining demographic and pharmacology factors influencing prescribing expenditure. The study commences against a backdrop of growing GMS prescribing costs, which has risen from e250 million in 1998 to over e1 billion by 2007. Using a sample 2007 HSE{PCRS prescribing data (n=192,000) and CSO population data from 2008, (Conway et al., 2014) estimated GMS prescribing expenditure could rise to e2 billion by2026. The cogency of these findings was impacted by the global economic crisis of 2008, which resulted in a sharp contraction in the Irish economy, mounting fiscal deficits resulting in Ireland's entry to a bailout programme. The sustainability of funding community drug schemes, such as the GMS, came under the spotlight of the EU, IMF, ECB (Trioka), who set stringent targets for reducing drug costs, as conditions of the bailout programme. Cost containment measures included: the introduction of income eligibility limits for GP visit cards and medical cards for those aged 70 and over, introduction of co{payments for prescription items, reductions in wholesale mark{up and pharmacy dispensing fees. Projections for GMS expenditure were reevaluated using 2012 HSE{PCRS prescribing population data and CSO population data based on Census 2011. Taking into account both cost containment measures and revised population predictions, GMS expenditure is estimated to increase by 64%, from e1.1 billion in 2016 to e1.8 billion by 2026, (ConwayLenihan and Woods, 2015). In the final paper, a cross{sectional study was carried out on HSE{PCRS population prescribing database (n=1.63 million claimants) to investigate the impact of demographic factors, and the pharmacology of the drugs, on GMS prescribing expenditure. Those aged over 75 (ẞ = 1:195) and cardiovascular prescribing (ẞ = 1:193) were the greatest contributors to annual GMS prescribing costs. Respiratory drugs (Montelukast) recorded the highest proportion and expenditure for GMS claimants under the age of 15. Drugs prescribed for the nervous system (Escitalopram, Olanzapine and Pregabalin) were highest for those between 16 and 64 years with cardiovascular drugs (Statins) were highest for those aged over 65. Females are more expensive than males and are prescribed more items across the four ATC groups, except among children under 11, (ConwayLenihan et al., 2016). This research indicates that growth in the proportion of the elderly claimants and associated levels of cardiovascular prescribing, particularly for statins, will present difficulties for Ireland in terms of cost containment. Whilst policies aimed at cost containment (co{payment charges, generic substitution, reference pricing, adjustments to GMS eligibility) can be used to curtail expenditure, health promotional programs and educational interventions should be given equal emphasis. Also policies intended to affect physicians prescribing behaviour include guidelines, information (about price and less expensive alternatives) and feedback, and the use of budgetary restrictions could yield savings.
Resumo:
In this paper, we will demonstrate the possibility of opening a new telecommunications transmission window around the 2 μm wavelength, in order to exploit the potential low loss of hollow-core photonic bandgap fibers, with the benefits of significantly lower non-linearity and latency. We will show recent efforts developing a dense wavelength division multiplexing testbed at this waveband, with 100 GHz spacing wavelength channels and 105 Gbit/s total capacity achieved.
Resumo:
Dynamically reconfigurable time-division multiplexing (TDM) dense wavelength division multiplexing (DWDM) long-reach passive optical networks (PONs) can support the reduction of nodes and network interfaces by enabling a fully meshed flat optical core. In this paper we demonstrate the flexibility of the TDM-DWDM PON architecture, which can enable the convergence of multiple service types on a single physical layer. Heterogeneous services and modulation formats, i.e. residential 10G PON channels, business 100G dedicated channel and wireless fronthaul, are demonstrated co-existing on the same long reach TDM-DWDM PON system, with up to 100km reach, 512 users and emulated system load of 40 channels, employing amplifier nodes with either erbium doped fiber amplifiers (EDFAs) or semiconductor optical amplifiers (SOAs). For the first time end-to-end software defined networking (SDN) management of the access and core network elements is also implemented and integrated with the PON physical layer in order to demonstrate two service use cases: a fast protection mechanism with end-to-end service restoration in the case of a primary link failure; and dynamic wavelength allocation (DWA) in response to an increased traffic demand.
Resumo:
Energy efficient Wavelength Division Multiplexing (WDM) is the key to satisfying the future bandwidth requirements of datacentres. As the silicon photonics platform is regarded the only technology able to meet the required power and cost efficiency levels, the development of silicon photonics compatible narrow linewidth lasers is now crucial. We discuss the requirements for such laser systems and report the experimental demonstration of a compact uncooled external-cavity mW-class laser architecture with a tunable Si Photonic Crystal resonant reflector, suitable for direct Frequency Modulation.
Resumo:
In this paper, we propose an orthogonal chirp division multiplexing (OCDM) technique for coherent optical communication. OCDM is the principle of orthogonally multiplexing a group of linear chirped waveforms for high-speed data communication, achieving the maximum spectral efficiency (SE) for chirp spread spectrum, in a similar way as the orthogonal frequency division multiplexing (OFDM) does for frequency division multiplexing. In the coherent optical (CO)-OCDM, Fresnel transform formulates the synthesis of the orthogonal chirps; discrete Fresnel transform (DFnT) realizes the CO-OCDM in the digital domain. As both the Fresnel and Fourier transforms are trigonometric transforms, the CO-OCDM can be easily integrated into the existing CO-OFDM systems. Analyses and numerical results are provided to investigate the transmission of CO-OCDM signals over optical fibers. Moreover, experiments of 36-Gbit/s CO-OCDM signal are carried out to validate the feasibility and confirm the analyses. It is shown that the CO-OCDM can effectively compensate the dispersion and is more resilient to fading and noise impairment than OFDM.
Resumo:
The use of InGaAs metamorphic buffer layers (MBLs) to facilitate the growth of lattice-mismatched heterostructures constitutes an attractive approach to developing long-wavelength semiconductor lasers on GaAs substrates, since they offer the improved carrier and optical confinement associated with GaAs-based materials. We present a theoretical study of GaAs-based 1.3 and 1.55 μm (Al)InGaAs quantum well (QW) lasers grown on InGaAs MBLs. We demonstrate that optimised 1.3 μm metamorphic devices offer low threshold current densities and high differential gain, which compare favourably with InP-based devices. Overall, our analysis highlights and quantifies the potential of metamorphic QWs for the development of GaAs-based long-wavelength semiconductor lasers, and also provides guidelines for the design of optimised devices.
Resumo:
Freestanding semipolar (11–22) indium gallium nitride (InGaN) multiplequantum-well light-emitting diodes (LEDs) emitting at 445 nm have been realized by the use of laser lift-off (LLO) of the LEDs from a 50- m-thick GaN layer grown on a patterned (10–12) r -plane sapphire substrate (PSS). The GaN grooves originating from the growth on PSS were removed by chemical mechanical polishing. The 300 m × 300 m LEDs showed a turn-on voltage of 3.6 V and an output power through the smooth substrate of 0.87 mW at 20 mA. The electroluminescence spectrum of LEDs before and after LLO showed a stronger emission intensity along the [11–23]InGaN/GaN direction. The polarization anisotropy is independent of the GaN grooves, with a measured value of 0.14. The bandwidth of the LEDs is in excess of 150 MHz at 20 mA, and back-to-back transmission of 300 Mbps is demonstrated, making these devices suitable for visible light communication (VLC) applications.
Resumo:
Predicting user behaviour enables user assistant services provide personalized services to the users. This requires a comprehensive user model that can be created by monitoring user interactions and activities. BaranC is a framework that performs user interface (UI) monitoring (and collects all associated context data), builds a user model, and supports services that make use of the user model. A prediction service, Next-App, is built to demonstrate the use of the framework and to evaluate the usefulness of such a prediction service. Next-App analyses a user's data, learns patterns, makes a model for a user, and finally predicts, based on the user model and current context, what application(s) the user is likely to want to use. The prediction is pro-active and dynamic, reflecting the current context, and is also dynamic in that it responds to changes in the user model, as might occur over time as a user's habits change. Initial evaluation of Next-App indicates a high-level of satisfaction with the service.
Resumo:
A comprehensive user model, built by monitoring a user's current use of applications, can be an excellent starting point for building adaptive user-centred applications. The BaranC framework monitors all user interaction with a digital device (e.g. smartphone), and also collects all available context data (such as from sensors in the digital device itself, in a smart watch, or in smart appliances) in order to build a full model of user application behaviour. The model built from the collected data, called the UDI (User Digital Imprint), is further augmented by analysis services, for example, a service to produce activity profiles from smartphone sensor data. The enhanced UDI model can then be the basis for building an appropriate adaptive application that is user-centred as it is based on an individual user model. As BaranC supports continuous user monitoring, an application can be dynamically adaptive in real-time to the current context (e.g. time, location or activity). Furthermore, since BaranC is continuously augmenting the user model with more monitored data, over time the user model changes, and the adaptive application can adapt gradually over time to changing user behaviour patterns. BaranC has been implemented as a service-oriented framework where the collection of data for the UDI and all sharing of the UDI data are kept strictly under the user's control. In addition, being service-oriented allows (with the user's permission) its monitoring and analysis services to be easily used by 3rd parties in order to provide 3rd party adaptive assistant services. An example 3rd party service demonstrator, built on top of BaranC, proactively assists a user by dynamic predication, based on the current context, what apps and contacts the user is likely to need. BaranC introduces an innovative user-controlled unified service model of monitoring and use of personal digital activity data in order to provide adaptive user-centred applications. This aims to improve on the current situation where the diversity of adaptive applications results in a proliferation of applications monitoring and using personal data, resulting in a lack of clarity, a dispersal of data, and a diminution of user control.
Resumo:
Mobile and wireless networks have long exploited mobility predictions, focused on predicting the future location of given users, to perform more efficient network resource management. In this paper, we present a new approach in which we provide predictions as a probability distribution of the likelihood of moving to a set of future locations. This approach provides wireless services a greater amount of knowledge and enables them to perform more effectively. We present a framework for the evaluation of this new type of predictor, and develop 2 new predictors, HEM and G-Stat. We evaluate our predictors accuracy in predicting future cells for mobile users, using two large geolocation data sets, from MDC [11], [12] and Crawdad [13]. We show that our predictors can successfully predict with as low as an average 2.2% inaccuracy in certain scenarios.