7 resultados para Programming environments
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, Grant No. 07/CE/11147)
Resumo:
There are a number of reasons why this researcher has decided to undertake this study into the differences in the social competence of children who attend integrated Junior Infant classes and children who attend segregated learning environments. Theses reasons are both personal and professional. My personal reasons stem from having grown up in a family which included both an aunt who presented with Down Syndrome and an uncle who presented with hearing impairment. Both of these relatives' experiences in our education system are interesting. My aunt was considered ineducable while her brother - my uncle - was sent to Dublin (from Cork) at six years of age to be educated by a religious order. My professional reasons, on the other hand, stemmed from my teaching experience. Having taught in both special and integrated classrooms it became evident to me that there was somewhat 'suspicion' attached to integration. Parents of children without disabilities questioned whether this process would have a negative impact on their children's education. While parents of children with disabilities debated whether integrated settings met the specific needs of their children. On the other hand, I always questioned whether integration and inclusiveness meant the same thing. My research has enabled me to find many answers. Increasingly, children with special educational needs (SEN) are attending a variety of integrated and inclusive childcare and education settings. This contemporary practice of educating children who present with disabilities in mainstream classrooms has stimulated vast interest on the impact of such practices on children with identified disabilities. Indeed, children who present with disabilities "fare far better in mainstream education than in special schools" (Buckley, cited in Siggins, 2001,p.25). However, educators and practitioners in the field of early years education and care are concerned with meeting the needs of all children in their learning environments, while also upholding high academic standards (Putman, 1993). Fundamentally, therefore, integrated education must also produce questions about the impact of this practice on children without identified special educational needs. While these questions can be addressed from the various areas of child development (i.e. cognitive, physical, linguistic, emotional, moral, spiritual and creative), this research focused on the social domain. It investigates the development of social competence in junior infant class children without identified disabilities as they experience different educational settings.
Exploring processes of indeterminate determinism in music composition, programming and improvisation
Resumo:
This portfolio consists of 15 original musical works. Taking the form of electronic and acousmatic music, multimedia, and scores, these chamber works serve as a result of experimentation and improvisation with individually built computer interfaces. The accompanying commentary provides discourse on the conceptual practice of these interfaces becoming a compositional entity that present a multi-interpretative opportunity to explore, engage, and personalise. Following this, the commentary examines the path of creative decisions and musical choices that formed both these interfaces and the resulting musical and visual works. This portfolio is accompanied by interfaces used, transcoded interfacing behavioural information, and documented improvisational findings.
Resumo:
This work considers the static calculation of a program’s average-case time. The number of systems that currently tackle this research problem is quite small due to the difficulties inherent in average-case analysis. While each of these systems make a pertinent contribution, and are individually discussed in this work, only one of them forms the basis of this research. That particular system is known as MOQA. The MOQA system consists of the MOQA language and the MOQA static analysis tool. Its technique for statically determining average-case behaviour centres on maintaining strict control over both the data structure type and the labeling distribution. This research develops and evaluates the MOQA language implementation, and adds to the functions already available in this language. Furthermore, the theory that backs MOQA is generalised and the range of data structures for which the MOQA static analysis tool can determine average-case behaviour is increased. Also, some of the MOQA applications and extensions suggested in other works are logically examined here. For example, the accuracy of classifying the MOQA language as reversible is investigated, along with the feasibility of incorporating duplicate labels into the MOQA theory. Finally, the analyses that take place during the course of this research reveal some of the MOQA strengths and weaknesses. This thesis aims to be pragmatic when evaluating the current MOQA theory, the advancements set forth in the following work and the benefits of MOQA when compared to similar systems. Succinctly, this work’s significant expansion of the MOQA theory is accompanied by a realistic assessment of MOQA’s accomplishments and a serious deliberation of the opportunities available to MOQA in the future.
Resumo:
A wireless sensor network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. In addition, minimising the number of relay nodes might lead to long routing paths to the sink, which may cause problems of data latency. This data latency is extremely important in wireless sensor network applications such as battlefield surveillance, intrusion detection, disaster rescue, highway traffic coordination, etc. where they must not violate the real-time constraints. Therefore, we also consider the problem of deploying multiple sinks in order to improve the network performance. Previous research has only parts of this problem in isolation, and has not properly considered the problems of moving through a constrained environment or discovering changes to that environment during the repair or network quality after the restoration. In this thesis, we firstly consider a base problem in which we assume the exploration tasks have already been completed, and so our aim is to optimise our use of resources in the static fully observed problem. In the real world, we would not know the radio and physical environments after damage, and this creates a dynamic problem where damage must be discovered. Therefore, we extend to the dynamic problem in which the network repair problem considers both exploration and restoration. We then add a hop-count constraint for network quality in which the desired locations can talk to a sink within a hop count limit after the network is restored. For each new problem of the network repair, we have proposed different solutions (heuristics and/or complete algorithms) which prioritise different objectives. We evaluate our solutions based on simulation, assessing the quality of solutions (node cost, movement cost, computation time, and total restoration time) by varying the problem types and the capability of the agent that makes the repair. We show that the relative importance of the objectives influences the choice of algorithm, and different speeds of movement for the repairing agent have a significant impact on performance, and must be taken into account when selecting the algorithm. In particular, the node-based approaches are the best in the node cost, and the path-based approaches are the best in the mobility cost. For the total restoration time, the node-based approaches are the best with a fast moving agent while the path-based approaches are the best with a slow moving agent. For a medium speed moving agent, the total restoration time of the node-based approaches and that of the path-based approaches are almost balanced.
Resumo:
In order to determine the size-resolved chemical composition of single particles in real-time an ATOFMS was deployed at urban background sites in Paris and Barcelona during the MEGAPOLI and SAPUSS monitoring campaigns respectively. The particle types detected during MEGAPOLI included several carbonaceous species, metal-containing types and sea-salt. Elemental carbon particle types were highly abundant, with 86% due to fossil fuel combustion and 14% attributed to biomass burning. Furthermore, 79% of the EC was apportioned to local emissions and 21% to continental transport. The carbonaceous particle types were compared with quantitative measurements from other instruments, and while direct correlations using particle counts were poor, scaling of the ATOFMS counts greatly improved the relationship. During SAPUSS carbonaceous species, sea-salt, dust, vegetative debris and various metal-containing particle types were identified. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North African air masses the city was heavily influenced by Saharan dust. A regional stagnation was also observed leading to a large increase in carbonaceous particle counts. While the ATOFMS provides a list of particle types present during the measurement campaigns, the data presented is not directly quantitative. The quantitative response of the ATOFMS to metals was examined by comparing the ion signals within particle mass spectra and to hourly mass concentrations of; Na, K, Ca, Ti, V, Cr, Mn, Fe, Zn and Pb. The ATOFMS was found to have varying correlations with these metals depending on sampling issues such as matrix effects. The strongest correlations were observed for Al, Fe, Zn, Mn and Pb. Overall the results of this work highlight the excellent ability of the ATOFMS in providing composition and mixing state information on atmospheric particles at high time resolution. However they also show its limitations in delivering quantitative information directly.
Resumo:
Open environments involve distributed entities interacting with each other in an open manner. Many distributed entities are unknown to each other but need to collaborate and share resources in a secure fashion. Usually resource owners alone decide who is trusted to access their resources. Since resource owners in open environments do not have a complete picture of all trusted entities, trust management frameworks are used to ensure that only authorized entities will access requested resources. Every trust management system has limitations, and the limitations can be exploited by malicious entities. One vulnerability is due to the lack of globally unique interpretation for permission specifications. This limitation means that a malicious entity which receives a permission in one domain may misuse the permission in another domain via some deceptive but apparently authorized route; this malicious behaviour is called subterfuge. This thesis develops a secure approach, Subterfuge Safe Trust Management (SSTM), that prevents subterfuge by malicious entities. SSTM employs the Subterfuge Safe Authorization Language (SSAL) which uses the idea of a local permission with a globally unique interpretation (localPermission) to resolve the misinterpretation of permissions. We model and implement SSAL with an ontology-based approach, SSALO, which provides a generic representation for knowledge related to the SSAL-based security policy. SSALO enables integration of heterogeneous security policies which is useful for secure cooperation among principals in open environments where each principal may have a different security policy with different implementation. The other advantage of an ontology-based approach is the Open World Assumption, whereby reasoning over an existing security policy is easily extended to include further security policies that might be discovered in an open distributed environment. We add two extra SSAL rules to support dynamic coalition formation and secure cooperation among coalitions. Secure federation of cloud computing platforms and secure federation of XMPP servers are presented as case studies of SSTM. The results show that SSTM provides robust accountability for the use of permissions in federation. It is also shown that SSAL is a suitable policy language to express the subterfuge-safe policy statements due to its well-defined semantics, ease of use, and integrability.