4 resultados para Production chain

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the European Union under the Common Agricultural Policy (CAP) milk production was restricted by milk quotas since 1984. However, due to recent changes in the Common Agricultural Policy (CAP), milk quotas will be abolished by 2015. Therefore, the European dairy sector will soon face an opportunity, for the first time in a generation, to expand. Numerous studies have shown that milk production in Ireland will increase significantly post quotas (Laepple and Hennessy (2010), Donnellan and Hennessy (2007) and Lips and Reider (2005)). The research in this thesis explored milk transport and dairy product processing in the Irish dairy processing sector in the context of milk quota removal and expansion by 2020. In this study a national milk transport model was developed for the Irish dairy industry, the model was used to examine different efficiency factors in milk transport and to estimate milk transport costs post milk quota abolition. Secondly, the impact of different milk supply profiles on milk transport costs was investigated using the milk transport model. Current processing capacity in Ireland was compared against future supply, it was concluded that additional milk processing capacity would not be sufficient to process the additional milk. Thirdly, the milk transport model was used to identify the least cost locations (based on transport costs) to process the additional milk supply in 2020. Finally, an optimisation model was developed to identify the optimum configuration for the Irish dairy processing sector in 2020 taking cognisance of increasing transport costs and decreasing processing costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petrochemical plastics/polymers are a common feature of day to day living as they occur in packaging, furniture, mobile phones, computers, construction equipment etc. However, these materials are produced from non-renewable materials and are resistant to microbial degradation in the environment. Considerable research has therefore been carried out into the production of sustainable, biodegradable polymers, amenable to microbial catabolism to CO2 and H2O. A key group of microbial polyesters, widely considered as optimal replacement polymers, are the Polyhydroxyalkaonates (PHAs). Primary research in this area has focused on using recombinant pure cultures to optimise PHA yields, however, despite considerable success, the high costs of pure culture fermentation have thus far hindered the commercial viability of PHAs thus produced. In more recent years work has begun to focus on mixed cultures for the optimisation of PHA production, with waste incorporations offering optimal production cost reductions. The scale of dairy processing in Ireland, and the high organic load wastewaters generated, represent an excellent potential substrate for bioconversion to PHAs in a mixed culture system. The current study sought to investigate the potential for such bioconversion in a laboratory scale biological system and to establish key operational and microbial characteristics of same. Two sequencing batch reactors were set up and operated along the lines of an enhanced biological phosphate removal (EBPR) system, which has PHA accumulation as a key step within repeated rounds of anaerobic/aerobic cycling. Influents to the reactors varied only in the carbon sources provided. Reactor 1 received artificial wastewater with acetate alone, which is known to be readily converted to PHA in the anaerobic step of EBPR. Reactor 2 wastewater influent contained acetate and skim milk to imitate a dairy processing effluent. Chemical monitoring of nutrient remediation within the reactors as continuously applied and EBPR consistent performances observed. Qualitative analysis of the sludge was carried out using fluorescence microscopy with Nile Blue A lipophillic stain and PHA production was confirmed in both reactors. Quantitative analysis via HPLC detection of crotonic acid derivatives revealed the fluorescence to be short chain length Polyhydroxybutyrate, with biomass dry weight accumulations of 11% and 13% being observed in reactors 1 and 2, respectively. Gas Chromatography-Mass Spectrometry for medium chain length methyl ester derivatives revealed the presence of hydroxyoctanoic, -decanoic and -dodecanoic acids in reactor 1. Similar analyses in reactor 2 revealed monomers of 3-hydroxydodecenoic and 3-hydroxytetradecanoic acids. Investigation of the microbial ecology of both reactors as conducted in an attempt to identify key species potentially contributing to reactor performance. Culture dependent investigations indicated that quite different communities were present in both reactors. Reactor 1 isolates demonstrated the following species distributions Pseudomonas (82%), Delftia acidovorans (3%), Acinetobacter sp. (5%) Aminobacter sp., (3%) Bacillus sp. (3%), Thauera sp., (3%) and Cytophaga sp. (3%). Relative species distributions among reactor 2 profiled isolates were more evenly distributed between Pseudoxanthomonas (32%), Thauera sp (24%), Acinetobacter (24%), Citrobacter sp (8%), Lactococcus lactis (5%), Lysinibacillus (5%) and Elizabethkingia (2%). In both reactors Gammaproteobacteria dominated the cultured isolates. Culture independent 16S rRNA gene analyses revealed differing profiles for both reactors. Reactor 1 clone distribution was as follows; Zooglea resiniphila (83%), Zooglea oryzae (2%), Pedobacter composti (5%), Neissericeae sp. (2%) Rhodobacter sp. (2%), Runella defluvii (3%) and Streptococcus sp. (3%). RFLP based species distribution among the reactor 2 clones was as follows; Runella defluvii (50%), Zoogloea oryzae (20%), Flavobacterium sp. (9%), Simplicispira sp. (6%), Uncultured Sphingobacteria sp. (6%), Arcicella (6%) and Leadbetterella bysophila (3%). Betaproteobacteria dominated the 16S rRNA gene clones identified in both reactors. FISH analysis with Nile Blue dual staining resolved these divergent findings, identifying the Betaproteobacteria as dominant PHA accumulators within the reactor sludges, although species/strain specific allocations could not be made. GC analysis of the sludge had indicated the presence of both medium chain length as well short chain length PHAs accumulating in both reactors. In addition the cultured isolates from the reactors had been identified previously as mcl and scl PHA producers, respectively. Characterisations of the PHA monomer profiles of the individual isolates were therefore performed to screen for potential novel scl-mcl PHAs. Nitrogen limitation driven PHA accumulation in E2 minimal media revealed a greater propensity among isoates for mcl-pHA production. HPLC analysis indicated that PHB production was not a major feature of the reactor isolates and this was supported by the low presence of scl phaC1 genes among PCR screened isolates. A high percentage distribution of phaC2 mcl-PHA synthase genes was recorded, with the majority sharing high percentage homology with class II synthases from Pseudomonas sp. The common presence of a phaC2 homologue was not reflected in the production of a common polymer. Considerable variation was noted in both the monomer composition and ratios following GC analysis. While co-polymer production could not be demonstrated, potentially novel synthase substrate specificities were noted which could be exploited further in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consumer demand is revolutionizing the way products are being produced, distributed and marketed. In relation to the dairy sector in developing countries, aspects of milk quality are receiving more attention from both society and the government. However, milk quality management needs to be better addressed in dairy production systems to guarantee the access of stakeholders, mainly small-holders, into dairy markets. The present study is focused on an analysis of the interaction of the upstream part of the dairy supply chain (farmers and dairies) in the Mantaro Valley (Peruvian central Andes), in order to understand possible constraints both stakeholders face implementing milk quality controls and practices; and evaluate “ex-ante” how different strategies suggested to improve milk quality could affect farmers and processors’ profits. The analysis is based on three complementary field studies conducted between 2012 and 2013. Our work has shown that the presence of a dual supply chain combining both formal and informal markets has a direct impact on dairy production at the technical and organizational levels, affecting small formal dairy processors’ possibilities to implement contracts, including agreements on milk quality standards. The analysis of milk quality management from farms to dairy plants highlighted the poor hygiene in the study area, even when average values of milk composition were usually high. Some husbandry practices evaluated at farm level demonstrated cost effectiveness and a big impact on hygienic quality; however, regular application of these practices was limited, since small-scale farmers do not receive a bonus for producing hygienic milk. On the basis of these two results, we co-designed with formal small-scale dairy processors a simulation tool to show prospective scenarios, in which they could select their best product portfolio but also design milk payment systems to reward farmers’ with high milk quality performances. This type of approach allowed dairy processors to realize the importance of including milk quality management in their collection and manufacturing processes, especially in a context of high competition for milk supply. We concluded that the improvement of milk quality in a smallholder farming context requires a more coordinated effort among stakeholders. Successful implementation of strategies will depend on the willingness of small-scale dairy processors to reward farmers producing high milk quality; but also on the support from the State to provide incentives to the stakeholders in the formal sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adult intestinal microbiota comprises a microbial ecosystem of approximately 100 trillion microorganisms, with specific bacterial communities holding distinct metabolic capabilities. Bacteria produce a range of bioactive compounds to survive unfavourable stimuli and to interact with other organisms, and generate several bioactive products during degradation of dietary constituents the host is not capable of digesting. This thesis addressed the impact of feeding potential probiotic bacteria and other dietary strategies such as pure fatty acids and prebiotics, on gut microbiota composition, short chain fatty acid (SCFA) production and modulation of metabolism in animal models. In the first experimental chapter (Chapter 2) a gas chromatography method for the quantification of SCFA was optimized and applied in the analysis of caecal samples obtained in animal studies described in other chapters of this thesis. In Chapter 3, t10, c12 CLA supplementation was shown to significantly alter murine gut microbiota composition and SCFA production rather than no supplementation. These changes were suggested to be extra factors affecting host lipid metabolism. Chapter 4 described the contrasting effects of CLA-producing strains, Bifidobacterium breve DPC 6330 and B. breve NCIMB 702258, on murine fat distribution/composition and gut microbiota composition, suggesting that these changes were most likely strain-dependent. In Chapter 5, dietary GABA-producing strain Lactobacillus brevis DPC 6108 was shown to significantly increase (p<0.05) serum insulin in healthy rats, leading to a second experiment using a type 1 diabetes rat model. Lb. brevis DPC 6108 administration did not change insulin levels in diabetic rats, but attenuated high levels of glucose when compared to diabetic control. However, an auto-immune-induced diabetes model was suggested as a better model to study GABA-related effects on diabetes. In Chapter 6 bovine milk oligosaccharides, 6’sialyllactose and Beneo Orafti P95 oligofructose supplementations were associated with depletion or reduction of less favourable bacteria, demonstrating that ingestion of these oligosaccharides might be a safe and effective approach to modulate populations of the intestinal microbiota. In Chapter 7 (General discussion) the major findings of all studies were reviewed and discussed.