2 resultados para Probabilistic logic

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the proliferation of mobile wireless communication and embedded systems, the energy efficiency becomes a major design constraint. The dissipated energy is often referred as the product of power dissipation and the input-output delay. Most of electronic design automation techniques focus on optimising only one of these parameters either power or delay. Industry standard design flows integrate systematic methods of optimising either area or timing while for power consumption optimisation one often employs heuristics which are characteristic to a specific design. In this work we answer three questions in our quest to provide a systematic approach to joint power and delay Optimisation. The first question of our research is: How to build a design flow which incorporates academic and industry standard design flows for power optimisation? To address this question, we use a reference design flow provided by Synopsys and integrate in this flow academic tools and methodologies. The proposed design flow is used as a platform for analysing some novel algorithms and methodologies for optimisation in the context of digital circuits. The second question we answer is: Is possible to apply a systematic approach for power optimisation in the context of combinational digital circuits? The starting point is a selection of a suitable data structure which can easily incorporate information about delay, power, area and which then allows optimisation algorithms to be applied. In particular we address the implications of a systematic power optimisation methodologies and the potential degradation of other (often conflicting) parameters such as area or the delay of implementation. Finally, the third question which this thesis attempts to answer is: Is there a systematic approach for multi-objective optimisation of delay and power? A delay-driven power and power-driven delay optimisation is proposed in order to have balanced delay and power values. This implies that each power optimisation step is not only constrained by the decrease in power but also the increase in delay. Similarly, each delay optimisation step is not only governed with the decrease in delay but also the increase in power. The goal is to obtain multi-objective optimisation of digital circuits where the two conflicting objectives are power and delay. The logic synthesis and optimisation methodology is based on AND-Inverter Graphs (AIGs) which represent the functionality of the circuit. The switching activities and arrival times of circuit nodes are annotated onto an AND-Inverter Graph under the zero and a non-zero-delay model. We introduce then several reordering rules which are applied on the AIG nodes to minimise switching power or longest path delay of the circuit at the pre-technology mapping level. The academic Electronic Design Automation (EDA) tool ABC is used for the manipulation of AND-Inverter Graphs. We have implemented various combinatorial optimisation algorithms often used in Electronic Design Automation such as Simulated Annealing and Uniform Cost Search Algorithm. Simulated Annealing (SMA) is a probabilistic meta heuristic for the global optimization problem of locating a good approximation to the global optimum of a given function in a large search space. We used SMA to probabilistically decide between moving from one optimised solution to another such that the dynamic power is optimised under given delay constraints and the delay is optimised under given power constraints. A good approximation to the global optimum solution of energy constraint is obtained. Uniform Cost Search (UCS) is a tree search algorithm used for traversing or searching a weighted tree, tree structure, or graph. We have used Uniform Cost Search Algorithm to search within the AIG network, a specific AIG node order for the reordering rules application. After the reordering rules application, the AIG network is mapped to an AIG netlist using specific library cells. Our approach combines network re-structuring, AIG nodes reordering, dynamic power and longest path delay estimation and optimisation and finally technology mapping to an AIG netlist. A set of MCNC Benchmark circuits and large combinational circuits up to 100,000 gates have been used to validate our methodology. Comparisons for power and delay optimisation are made with the best synthesis scripts used in ABC. Reduction of 23% in power and 15% in delay with minimal overhead is achieved, compared to the best known ABC results. Also, our approach is also implemented on a number of processors with combinational and sequential components and significant savings are achieved.