5 resultados para Prato cheese
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
High throughput next generation sequencing, together with advanced molecular methods, has considerably enhanced the field of food microbiology. By overcoming biases associated with culture dependant approaches, it has become possible to achieve novel insights into the nature of food-borne microbial communities. In this thesis, several different sequencing-based approaches were applied with a view to better understanding microbe associated quality defects in cheese. Initially, a literature review provides an overview of microbe-associated cheese quality defects as well as molecular methods for profiling complex microbial communities. Following this, 16S rRNA sequencing revealed temporal and spatial differences in microbial composition due to the time during the production day that specific commercial cheeses were manufactured. A novel Ion PGM sequencing approach, focusing on decarboxylase genes rather than 16S rRNA genes, was then successfully employed to profile the biogenic amine producing cohort of a series of artisanal cheeses. Investigations into the phenomenon of cheese pinking formed the basis of a joint 16S rRNA and whole genome shotgun sequencing approach, leading to the identification of Thermus species and, more specifically, the pathway involved in production of lycopene, a red coloured carotenoid. Finally, using a more traditional approach, the effect of addition of a facultatively heterofermentative Lactobacillus (Lactobacillus casei) to a Swiss-type cheese, in which starter activity was compromised, was investigated from the perspective of its ability to promote gas defects and irregular eye formation. X-ray computed tomography was used to visualise, using a non-destructive method, the consequences of the undesirable gas formation that resulted. Ultimately this thesis has demonstrated that the application of molecular techniques, such as next generation sequencing, can provide a detailed insight into defect-causing microbial populations present and thereby may underpin approaches to optimise the quality and consistency of a wide variety of cheeses.
Resumo:
The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.
Resumo:
Cheddar cheese was made using control culture (Lactococcus lactis subsp. lactis), or with control culture plus a galactose-metabolising (Gal+) or galactose-non-metabolising (Gal-) Streptococcus thermophilus adjunct; for each culture type, the pH at whey drainage was either low (pH 6.15) or high (pH 6.45). Sc. thermophilus affected the levels of residual lactose and galactose, and the volatile compound profile and sensory properties of the mature cheese (270 d) to an extent dependent on the drain pH and phenotype (Gal+ or Gal-). For all culture systems, reducing drain pH resulted in lower levels of moisture and lactic acid, a higher concentration of free amino acids, and higher firmness. The results indicate that Sc. thermophilus may be used to diversify the sensory properties of Cheddar cheese, for example from a fruity buttery odour and creamy flavour to a more acid taste, rancid odour, and a sweaty cheese flavour at high drain pH.
Resumo:
The bacteriocin class of antimicrobial peptides have emerged as a viable alternative to at least partially fill the void created by the end of the golden age of antibiotic discovery. Along with this potential use in a clinical setting, bacteriocins also play an important role as bio-preservatives in the food industry. This thesis focuses on a specific bacteriocin group, the lantibiotics (Lanthionine-containing antibiotics). Their numerous methods of appliance in a food setting and how their gene-encoded nature can be modified to improve on overall bioactivity and functionality are explored here. The use of a lantibiotic (lacticin 3147) producing starter culture to control the Crohn’s disease-linked pathogen Mycobacterium paratuberculosis was assessed in a raw milk cheese. Although lacticin 3147 production did not effectively control the pathogen, the study provided an impetus to employ a variety of PCR-based mutagenesis techniques with a view to the creation of enhanced lantibiotic derivatives. Through the use of these techniques, a number of enhanced derivatives were generated from the ‘hinge’ region of the nisin peptide. Furthermore, a derivative in which the three hinge amino acids were replaced with three alanines represents the first enhanced derivative of nisin to have been designed through a rational process. This derivative also formed the backbone for the creation of an active, trypsin resistant, variant. Through the employment of further mutagenesis methods a derivative was created with potential use as an oral anti-bacterial in the future. Finally a number of lead nisin derivatives were investigated to assess their anti- Streptococcus agalactiae ability, a mastitis associated pathogen. Also a system was developed to facilitate the large scale production of these candidates, or other nisin derivatives, from dairy substrates.
Resumo:
This thesis investigates the phenotypic and genotypic diversity of non-dairy L. lactis strains and their application to dairy fermentations. A bank of non-dairy lactococci were isolated from grass, vegetables and the bovine rumen. Subsequent analysis of these L. lactis strains revealed seven strains to possess cremoris genotypes which did not correlate with their observed phenotypes. Multi-locus sequence typing (MLST) and average nucleotide identity (ANI) highlighted the genetic diversity of lactis and cremoris subspecies. The application of these non-dairy lactococci to cheese production was also assessed. In milk, non-dairy strains formed diverse volatile profiles and selected strains were used as adjuncts in a mini Gouda-type cheese system. Sensory analysis showed non-dairy strains to be strongly associated with the development of off-flavours and bitterness. However, microfluidisation appeared to reduce bitterness. A novel bacteriophage, ɸL47, was isolated using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. The phage, a member of the Siphoviridae, possessed a long tail fiber, previously unseen in dairy lactococcal phages. Genome sequencing revealed ɸL47 to be the largest sequenced lactococcal phage to date and owing to the high % similarity with ɸ949, a second member of the 949 group. Finally, to identify and characterise specific genes which may be important in niche adaptation and for applications to dairy fermentations, comparative genome sequence analysis was performed on L. lactis from corn (DPC6853), the bovine rumen (DPC6853) and grass (DPC6860). This study highlights the contribution of niche specialisation to the intra-species diversity of L. lactis and the adaptation of this organism to different environments. In summary this thesis describes the genetic diversity of L. lactis strains from outside the dairy environment and their potential application in dairy fermentations.