3 resultados para Posttraumatic stress disorder
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Visceral pain is a debilitating disorder which affects up to 25% of the population at any one time. It is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. Currently the treatment strategies are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. The work presented in this thesis aimed to redress this issue and look in more detail at the molecular mechanisms of visceral pain in preclinical models. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here a mouse model of early-life stress-induced visceral hypersensitivity was validated. Moreover, mouse strain differences were also apparent in visceral sensitivity suggesting a possible genetic component to the underlying pathophysiology. Furthermore, gender and sex hormones were also implicated in stress sensitivity and visceral pain. Using the rat model of maternal separation, some of the epigenetic mechanisms underpinning visceral hypersensitivity, specifically the contribution of histone acetylation were unravelled. Glutamate has been well established in somatic pain processing, however, its contribution to visceral pain has not been extensively characterised. It was found that glutamate uptake is impaired in viscerally hypersensitive animals, an effect which could be reversed by treatment with riluzole, a glutamate uptake activator. Moreover, negative modulation of the metabotropic glutamate (mGlu) receptor 7 was sufficient to reverse visceral hypersensitivity in a stress sensitive rat strain, the Wistar Kyoto rat. Furthermore, toll-like receptor 4 (TLR4) was implicated in chronic stress-induced visceral hypersensitivity. Taken together, these findings have furthered our knowledge of the pathophysiology of visceral pain. In addition, we have identified glutamate transporters, mGlu7 receptor, histone acetylation and TLR4 as novel targets, amenable to pharmacological manipulation for the specific treatment of visceral pain.
Resumo:
The gut-hormone, ghrelin, activates the centrally expressed growth hormone secretagogue 1a (GHS-R1a) receptor, or ghrelin receptor. The ghrelin receptor is a G-protein coupled receptor (GPCR) expressed in several brain regions, including the arcuate nucleus (Arc), lateral hypothalamus (LH), ventral tegmental area (VTA), nucleus accumbens (NAcc) and amygdala. Activation of the GHS-R1a mediates a multitude of biological activities, including release of growth hormone and food intake. The ghrelin signalling system also plays a key role in the hedonic aspects of food intake and activates the dopaminergic mesolimbic circuit involved in reward signalling. Recently, ghrelin has been shown to be involved in mediating a stress response and to mediate stress-induced food reward behaviour via its interaction with the HPA-axis at the level of the anterior pituitary. Here, we focus on the role of the GHS-R1a receptor in reward behaviour, including the motivation to eat, its anxiogenic effects, and its role in impulsive behaviour. We investigate the functional selectivity and pharmacology of GHS-R1a receptor ligands as well as crosstalk of the GHS-R1a receptor with the serotonin 2C (5-HT2C) receptor, which represent another major target in the regulation of eating behaviour, stress-sensitivity and impulse control disorders. We demonstrate, to our knowledge for the first time, the direct impact of GHS-R1a signalling on impulsive responding in a 2-choice serial reaction time task (2CSRTT) and show a role for the 5-HT2C receptor in modulating amphetamine-associated impulsive action. Finally, we investigate differential gene expression patterns in the mesocorticolimbic pathway, specifically in the NAcc and PFC, between innate low- and high-impulsive rats. Together, these findings are poised to have important implications in the development of novel treatment strategies to combat eating disorders, including obesity and binge eating disorders as well as impulse control disorders, including, substance abuse and addiction, attention deficit hyperactivity disorder (ADHD) and mood disorders.
Resumo:
Researchers interested in the neurobiology of the acute stress response in humans require a valid and reliable acute stressor that can be used under experimental conditions. The Trier Social Stress Test (TSST) provides such a testing platform. It induces stress by requiring participants to make an interview-style presentation, followed by a surprise mental arithmetic test, in front of an interview panel who do not provide feedback or encouragement. In this review, we outline the methodology of the TSST, and discuss key findings under conditions of health and stress-related disorder. The TSST has unveiled differences in males and females, as well as different age groups, in their neurobiological response to acute stress. The TSST has also deepened our understanding of how genotype may moderate the cognitive neurobiology of acute stress, and exciting new inroads have been made in understanding epigenetic contributions to the biological regulation of the acute stress response using the TSST. A number of innovative adaptations have been developed which allow for the TSST to be used in group settings, with children, in combination with brain imaging, and with virtual committees. Future applications may incorporate the emerging links between the gut microbiome and the stress response. Future research should also maximise use of behavioural data generated by the TSST. Alternative acute stress paradigms may have utility over the TSST in certain situations, such as those that require repeat testing. Nonetheless, we expect that the TSST remains the gold standard for examining the cognitive neurobiology of acute stress in humans.