2 resultados para Popular novel
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
“History, Revolution and the British Popular Novel” takes as its focus the significant role which historical fiction played within the French Revolution debate and its aftermath. Examining the complex intersection of the genre with the political and historical dialogue generated by the French Revolution crisis, the thesis contends that contemporary fascination with the historical episode of the Revolution, and the fundamental importance of history to the disputes which raged about questions of tradition and change, and the meaning of the British national past, led to the emergence of increasingly complex forms of fictional historical narrative during the “war of ideas.” Considering the varying ways in which novelists such as Charlotte Smith, William Godwin, Mary Robinson, Helen Craik, Clara Reeve, John Moore, Edward Sayer, Mary Charlton, Ann Thomas, George Walker and Jane West engaged with the historical contexts of the Revolution debate, my discussion juxtaposes the manner in which English Jacobin novelists inserted the radical critique of the Jacobin novel into the wider arena of history with anti-Jacobin deployments of the historical to combat the revolutionary threat and internal moves for socio-political restructuring. I argue that the use of imaginative historical narrative to contribute to the ongoing dialogue surrounding the Revolution, and offer political and historical guidance to readers, represented a significant element within the literature of the Revolution crisis. The thesis also identifies the diverse body of historical fiction which materialised amidst the Revolution controversy as a key context within which to understand the emergence of Scott’s national historical novel in 1814, and the broader field of historical fiction in the era of Waterloo. Tracing the continued engagement with revolutionary and political concerns evident in the early Waverley novels, Frances Burney’s The Wanderer (1814), William Godwin’s Mandeville (1816), and Mary Shelley’s Valperga (1823), my discussion concludes by arguing that Godwin’s and Shelley’s extension of the mode of historical fiction initially envisioned by Godwin in the revolutionary decade, and their shared endeavour to retrieve the possibility enshrined within the republican past, appeared as a significant counter to the model of history and fiction developed by Walter Scott in the post-revolutionary epoch.
Resumo:
The concept of pellicular particles was suggested by Horváth and Lipsky over fifty years ago. The reasoning behind the idea of these particles was to improve column efficiency by shortening the pathways analyte molecules can travel, therefore reducing the effect of the A and C terms. Several types of shell particles were successfully marketed around this time, however with the introduction of high quality fully porous silica under 10 μm, shell particles faded into the background. In recent years a new generation of core shell particles have become popular within the separation science community. These particles allow fast and efficient separations that can be carried out on conventional HPLC systems. Chapter 1 of this thesis introduces the chemistry of chromatographic stationary phases, with an emphasis on silica bonded phases, particularly focusing on the current state of technology in this area. The main focus is on superficially porous silica particles as a support material for liquid chromatography. A summary of the history and development of these particles over the past few decades is explored, along with current methods of synthesis of shell particles. While commercial shell particles have a rough outer surface, Chapter 2 focuses on the novel approach to growth of smooth surface superficially porous particles in a step-by-step manner. From the Stöber methodology to the seeded growth technique, and finally to the layer-bylayer growth of the porous shell. The superficially porous particles generated in this work have an overall diameter of 2.6 μm with a 350 nm porous shell; these silica particles were characterised using SEM, TEM and BET analysis. The uniform spherical nature of the particles along with their surface area, pore size and particle size distribution are examined in this chapter. I discovered that these smooth surface shell particles can be synthesised to give comparable surface area and pore size in comparison to commercial brands. Chapter 3 deals with the bonding of the particles prepared in Chapter 2 with C18 functionality; one with a narrow and one with a wide particle size distribution. This chapter examines the chromatographic and kinetic performance of these silica stationary phases, and compares them to a commercial superficially porous silica phase with a rough outer surface. I found that the particle size distribution does not seem to be the major contributor to the improvement in efficiency. The surface morphology of the particles appears to play an important role in the packing process of these particles and influences the Van Deemter effects. Chapter 4 focuses on the functionalisation of 2.6 μm smooth surface superficially porous particles with a variety of fluorinated and phenyl silanes. The same processes were carried out on 3.0 μm fully porous silica particles to provide a comparison. All phases were accessed using elemental analysis, thermogravimetric analysis, nitrogen sorption analysis and chromatographically evaluated using the Neue test. I observed comparable results for the 2.6 μm shell pentaflurophenyl propyl silica when compared to 3.0 μm fully porous silica. Chapter 5 moves towards nano-particles, with the synthesis of sub-1 μm superficially porous particles, their characterisation and use in chromatography. The particles prepared are 750 nm in total with a 100 nm shell. All reactions and testing carried out on these 750 nm core shell particles are also carried out on 1.5 μm fully porous particles in order to give a comparative result. The 750 nm core shell particles can be synthesised quickly and are very uniform. The main drawback in their use for HPLC is the system itself due to the backpressure experienced using sub – 1 μm particles. The synthesis of modified Stöber particles is also examined in this chapter with a range of non-porous silica and shell silica from 70 nm – 750 nm being tested for use on a Langmuir – Blodgett system. These smooth surface shell particles have only been in existence since 2009. The results displayed in this thesis demonstrate how much potential smooth surface shell particles have provided more in-depth optimisation is carried out. The results on packing studies reported in this thesis aims to be a starting point for a more sophisticated methodology, which in turn can lead to greater chromatographic improvements.