2 resultados para Planning cultures in Europe : decoding cultural phenomena in urban and regional planning
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The composition of atmospheric particles is an important factor in determining their impact on climate and health. In this study, an aerosol time-of-flight mass spectrometer (ATOFMS) was used to measure the chemical composition of ambient single particles at two contrasting locations – an industrial site in Dunkirk, France and a regional background site in Corsica. The ATOFMS data were combined with meteorological information and other particle measurements to determine the various sources of the particles observed at the sites. The particle classes detected in Dunkirk included carbonaceous species from fossil fuel combustion and biomass burning, metal-containing types from local industries and seasalt. Highest particle number concentrations and mass concentrations of PM2.5, black carbon, organics, nitrate, ammonium and several metallic species (Fe, Mn, Pb, Zn) were found during periods heavily influenced by local industry. Particles from a ferromanganese alloy manufacturing facility were identified by comparing ambient ATOFMS data with single particle mass spectra from industrial chimney filters and ores. Particles from a steelworks were identified based on comparison of the ambient data with previous studies. Based on these comparisons, the steelworks was identified as the dominant emitter of Fe-rich particles, while the ferromanganese alloy facility emitted Mn-rich particles. In Corsica, regional transport of carbonaceous particles from biomass burning and fossil fuel combustion was identified as the major source of particles in the Mediterranean background aerosol. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North Atlantic air masses the site was heavily influenced by fresh sea salt. Regional stagnation was the most common type of air mass regime throughout the campaign and resulted in the accumulation of carbonaceous particles during certain periods. Mass concentrations were estimated for ATOFMS particle classes, and good agreement was found between the major carbonaceous classes and other quantitative measurements. Overall the results of this work serve to highlight the excellent ability of the ATOFMS technique in providing source-specific composition and mixing state information on atmospheric particles at high time resolution.
Resumo:
This thesis investigates the phenotypic and genotypic diversity of non-dairy L. lactis strains and their application to dairy fermentations. A bank of non-dairy lactococci were isolated from grass, vegetables and the bovine rumen. Subsequent analysis of these L. lactis strains revealed seven strains to possess cremoris genotypes which did not correlate with their observed phenotypes. Multi-locus sequence typing (MLST) and average nucleotide identity (ANI) highlighted the genetic diversity of lactis and cremoris subspecies. The application of these non-dairy lactococci to cheese production was also assessed. In milk, non-dairy strains formed diverse volatile profiles and selected strains were used as adjuncts in a mini Gouda-type cheese system. Sensory analysis showed non-dairy strains to be strongly associated with the development of off-flavours and bitterness. However, microfluidisation appeared to reduce bitterness. A novel bacteriophage, ɸL47, was isolated using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. The phage, a member of the Siphoviridae, possessed a long tail fiber, previously unseen in dairy lactococcal phages. Genome sequencing revealed ɸL47 to be the largest sequenced lactococcal phage to date and owing to the high % similarity with ɸ949, a second member of the 949 group. Finally, to identify and characterise specific genes which may be important in niche adaptation and for applications to dairy fermentations, comparative genome sequence analysis was performed on L. lactis from corn (DPC6853), the bovine rumen (DPC6853) and grass (DPC6860). This study highlights the contribution of niche specialisation to the intra-species diversity of L. lactis and the adaptation of this organism to different environments. In summary this thesis describes the genetic diversity of L. lactis strains from outside the dairy environment and their potential application in dairy fermentations.