6 resultados para Pipelines--Maintenance and repair

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is an integral part of infrastructure maintenance and management systems due to socio-economic, safety and security reasons. The behaviour of a structure under vibration depends on structure characteristics. The change of structure characteristics may suggest the change in system behaviour due to the presence of damage(s) within. Therefore the consistent, output signal guided, and system dependable markers would be convenient tool for the online monitoring, the maintenance, rehabilitation strategies, and optimized decision making policies as required by the engineers, owners, managers, and the users from both safety and serviceability aspects. SHM has a very significant advantage over traditional investigations where tangible and intangible costs of a very high degree are often incurred due to the disruption of service. Additionally, SHM through bridge-vehicle interaction opens up opportunities for continuous tracking of the condition of the structure. Research in this area is still in initial stage and is extremely promising. This PhD focuses on using bridge-vehicle interaction response for SHM of damaged or deteriorating bridges to monitor or assess them under operating conditions. In the present study, a number of damage detection markers have been investigated and proposed in order to identify the existence, location, and the extent of an open crack in the structure. The theoretical and experimental investigation has been conducted on Single Degree of Freedom linear system, simply supported beams. The novel Delay Vector Variance (DVV) methodology has been employed for characterization of structural behaviour by time-domain response analysis. Also, the analysis of responses of actual bridges using DVV method has been for the first time employed for this kind of investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of non-destructive techniques (NDT) in structural health monitoring programmes is being critically felt in the recent times. The quality of the measured data, often affected by various environmental conditions can be a guiding factor in terms usefulness and prediction efficiencies of the various detection and monitoring methods used in this regard. Often, a preprocessing of the acquired data in relation to the affecting environmental parameters can improve the information quality and lead towards a significantly more efficient and correct prediction process. The improvement can be directly related to the final decision making policy about a structure or a network of structures and is compatible with general probabilistic frameworks of such assessment and decision making programmes. This paper considers a preprocessing technique employed for an image analysis based structural health monitoring methodology to identify sub-marine pitting corrosion in the presence of variable luminosity, contrast and noise affecting the quality of images. A preprocessing of the gray-level threshold of the various images is observed to bring about a significant improvement in terms of damage detection as compared to an automatically computed gray-level threshold. The case dependent adjustments of the threshold enable to obtain the best possible information from an existing image. The corresponding improvements are observed in a qualitative manner in the present study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates three decision problems with potential to optimize operation and maintenance and logistics strategies for offshore wind farms: the timing of pre-determined jack-up vessel campaigns; selection of crew transfer vessel fleet; and timing of annual services. These problems are compared both in terms of potential cost reduction and the stochastic variability and associated uncertainty of the outcome. Pre-determined jack-up vessel campaigns appear to have a high cost reduction potential but also a higher stochastic variability than the other decision problems. The paper also demonstrates the benefits and difficulties of considering problems together rather than solving them in isolation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union has expanded significantly in recent years. Sustainable trade within the Union, leading to economic growth to the benefit of the ‘old’ and ‘new’ member states is thus extremely important. The road infrastructure is strategic and vital to such development since an uneven transport infrastructure, in terms of capacity and condition, has the potential to reinforce uneven development trends and hinder economic convergence of old and new member states. In the decades since their design and construction, loading conditions have significantly changed for many major highway infrastructure elements/networks owing primarily to increased freight volumes and vehicle sizes. This, coupled with the gradual deterioration of a significant number of highway structures due to their age, and the absence of a pan-European assessment framework, can be expected to affect the smooth functioning of the infrastructure in its as-built condition. Increased periods of reduced flow can be expected owing to planned and unplanned interventions for repair/rehabilitation. This paper reports the findings of a survey regarding the current status of the highway infrastructure elements in six countries within the European Union as reported by the owners/operators. The countries surveyed include a cross-section of ‘existing’ older countries and ‘new’ member states. The current situations for bridges, culverts, tunnels and retaining walls are reported, along with their potential replacement costs. The findings act as a departure point for further studies in support of a centralised and/or synchronised EU approach to infrastructure maintenance management. Information in the form presented in this paper is central to any future decision-making frameworks in terms of trade route choice and operations, monetary investment, optimised maintenance, management and rehabilitation of the built infrastructure and the economic integration of the newly joined member states.