2 resultados para Piecewise linear systems with two zones

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A planar reconfigurable linear (also rectilinear) rigid-body motion linkage (RLRBML) with two operation modes, that is, linear rigid-body motion mode and lockup mode, is presented using only R (revolute) joints. The RLRBML does not require disassembly and external intervention to implement multi-task requirements. It is created via combining a Robert’s linkage and a double parallelogram linkage (with equal lengths of rocker links) arranged in parallel, which can convert a limited circular motion to a linear rigid-body motion without any reference guide way. This linear rigid-body motion is achieved since the double parallelogram linkage can guarantee the translation of the motion stage, and Robert’s linkage ensures the approximate straight line motion of its pivot joint connecting to the double parallelogram linkage. This novel RLRBML is under the linear rigid-body motion mode if the four rocker links in the double parallelogram linkage are not parallel. The motion stage is in the lockup mode if all of the four rocker links in the double parallelogram linkage are kept parallel in a tilted position (but the inner/outer two rocker links are still parallel). In the lockup mode, the motion stage of the RLRBML is prohibited from moving even under power off, but the double parallelogram linkage is still moveable for its own rotation application. It is noted that further RLRBMLs can be obtained from the above RLRBML by replacing Robert’s linkage with any other straight line motion linkage (such as Watt’s linkage). Additionally, a compact RLRBML and two single-mode linear rigid-body motion linkages are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many deterministic models with hysteresis have been developed in the areas of economics, finance, terrestrial hydrology and biology. These models lack any stochastic element which can often have a strong effect in these areas. In this work stochastically driven closed loop systems with hysteresis type memory are studied. This type of system is presented as a possible stochastic counterpart to deterministic models in the areas of economics, finance, terrestrial hydrology and biology. Some price dynamics models are presented as a motivation for the development of this type of model. Numerical schemes for solving this class of stochastic differential equation are developed in order to examine the prototype models presented. As a means of further testing the developed numerical schemes, numerical examination is made of the behaviour near equilibrium of coupled ordinary differential equations where the time derivative of the Preisach operator is included in one of the equations. A model of two phenotype bacteria is also presented. This model is examined to explore memory effects and related hysteresis effects in the area of biology. The memory effects found in this model are similar to that found in the non-ideal relay. This non-ideal relay type behaviour is used to model a colony of bacteria with multiple switching thresholds. This model contains a Preisach type memory with a variable Preisach weight function. Shown numerically for this multi-threshold model is a pattern formation for the distribution of the phenotypes among the available thresholds.