8 resultados para Physicochemical properties
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The market for plant-based dairy-type products is growing as consumers replace bovine milk in their diet, for medical reasons or as a lifestyle choice. A screening of 17 different commercial plant-based milk substitutes based on different cereals, nuts and legumes was performed, including the evaluation of physicochemical and glycaemic properties. Half of the analysed samples had low or no protein contents (<0.5 %). Only samples based on soya showed considerable high protein contents, matching the value of cow’s milk (3.7 %). An in-vitro method was used to predict the glycaemic index. In general, the glycaemic index values ranged from 47 for bovine milk to 64 (almond-based) and up to 100 for rice-based samples. Most of the plant-based milk substitutes were highly unstable with separation rates up to 54.39 %/h. This study demonstrated that nutritional and physicochemical properties of plant-based milk substitutes are strongly dependent on the plant source, processing and fortification. Most products showed low nutritional qualities. Therefore, consumer awareness is important when plant-based milk substitutes are used as an alternative to cow’s milk in the diet.
Resumo:
The physicochemical properties of cheese and milk gels are greatly influenced by molecular interactions between the casein proteins involving calcium. Novel experiments were designed to investigate the relationship between insoluble caseinbound cations and rheological properties of Cheddar cheese and rennet-induced milk gels. Cheddar cheese and rennet-induced milk gels were supplemented with Mg2+ or Sr2+ to compare their effects on their rheological properties to those previously reported in literature for Ca2+ supplementation. Sr2+ displayed behaviour similar to Ca2+ as observed by its ability to increase the rigidity of cheese and rennet milk gels and also decrease cheese meltability. Mg+2 had no influence on cheese rheological properties and was greatly inferior to Ca2+ and Sr2+ in its ability to increase rennet milk gel elasticity. Cheddar cheese was supplemented with the calcium-chelating salts trisodium citrate, disodium hydrogen phosphate or disodium EDTA, in an attempt to reduce the CCP content of cheese and thereby modify its rheological and functional properties. TSC and EDTA were successful in decreasing cheese CCP, whereas DSP caused an initial increase in CCP content. Cheddar cheese was supplemented with chlorides of iron, copper and zinc at salting to investigate the effects of concentrations of these elements in excess of those found innately or commonly in fortification studies, with emphasis on mineral equilibria changes and resultant alteration of rheological properties. Zinc addition was the only added metal that significantly influenced cheese rheological properties, leading to an increase in cheese rigidity and decreased cheese melt at elevated temperatures. Gum tragacanth was used as a fat-replacer in the manufacture of reduced-fat Cheddar cheese, in an attempt to improve the rheological, functional and sensory properties of reduced-fat Cheddar. Overall, the experimental work reported in this thesis generated new knowledge and theories about how casein-mineral interactions influence rheological properties of casein systems.
Resumo:
The objectives of this thesis were to (i) study the effect of increasing protein concentration in milk protein concentrate (MPC) powders on surface composition and sorption properties; (ii) examine the effect of increasing protein content on the rehydration properties of MPC; (iii) study the physicochemical properties of spraydried emulsion-containing powders having different water and oil contents; (iv) analyse the effect of protein type on water sorption and diffusivity properties in a protein/lactose dispersion, and; (v) characterise lactose crystallisation and emulsion stability of model infant formula containing intact or hydrolysed whey proteins. Surface composition of MPC powders (protein contents 35 - 86 g / 100 g) indicated that fat and protein were preferentially located on the surface of powders. Low protein powder (35 g / 100 g) exhibited lactose crystallisation, whereas powders with higher protein contents did not, due to their high protein: lactose ratio. Insolubility was evident in high protein MPCs and was primarily related to insolubility of the casein fraction. High temperature (50 °C) was required for dissolution of high protein MPCs (protein content > 60 g / 100 g). The effect of different oil types and spray-drying outlet temperature on the physicochemical properties of the resultant fat-filled powders was investigated and showed that increasing outlet temperature reduced water content, water activity and tapped bulk density, irrespective of oil type, and increased solvent-extractable free fat for all oil types and onset of glass transition (Tg) and crystallisation (Tcr) temperature. Powder dispersions of protein/lactose (0.21:1), containing either intact or hydrolysed whey protein (12 % degree of hydrolysis; DH), were spray-dried at pilot scale. Moisture sorption analysis at 25 °C showed that dispersions containing intact whey protein exhibited lactose crystallisation at a lower relative humidity (RH). Dispersions containing hydrolysed whey protein had significantly higher (P < 0.05) water diffusivity. Finally, a spray-dried model infant formula was produced containing hydrolysed or intact whey as the protein with sunflower oil as the fat source. Reconstituted, hydrolysed formula had a significantly (P < 0.05) higher fat globule size and lower emulsion stability than intact formula. Lactose crystallisation in powders occurred at higher RH for hydrolysed formula. In conclusion, this research has shown the effect of altering the protein type, protein composition, and oil type on the surface composition and physical properties of different dairy powders, and how these variations greatly affect their rehydration characteristics and storage stability.
Resumo:
A novel deposition process named CoBlastTM, based on grit blasting technology, has been used to deposit hydroxyapatite (HA) onto titanium (Ti) metal using a dopant/abrasive regime. The various powders (HA powder, apatitic abrasives) and the treated substrates were characterised for chemical composition, coating coverage, crystallinity and topography including surface roughness. The surface roughness of the HA surfaces could be altered using apatitic abrasives of different particle sizes. Compared to the standard plasma spraying process, the CoBlast surface produced excellent coating adhesion, lower dissolution, higher levels of mechanical and chemical stability in stimulated body fluid (SBF). Enhanced viability of osteoblastic cells was also observed on the CoBlast HA surfaces compared to the microblast and untreated Ti as well as the plasma HA coating. CoBlast offers an alternative to the traditional methods of coating HA implants with added versatility. Apatites substituted with antimicrobial metals can also be deposited to add functionality to HA coatings without cytotoxicty. The potential use of these coatings as an infection preventing strategy for application on hard tissue implants was assessed in vitro and also in vivo. Surface physicochemical properties and morphology were determined in addition to surface cytocompatibility assessments using a MG-63 osteoblast cell line. The antibacterial potential of the immobilised metal ion on the surface and the eluted ion to a lesser extent, contributed to the anticolonising behaviour of the surfaces against a standard bacteria strain (S. aureus) as well as a number of clinically relevant strains (MRSA, MSSA and S. epidermis). The results revealed that the surfaces coated with silver substituted apatites (AgA) outperformed the other apatites examined (apatites loaded with Zn, Sr and both Ag and Sr ions). Assessment of bacterial adherence on coated K-wires following subcutaneous implantation in a nude mouse infection model (S. aureus) for two days demonstrated that the 12% wt surface outperformed the 5% wt AgA coating. Lower inflammatory responses were activated with the insertion of the Ag loaded K-wires with a localised infection at the implantation site noted over the two day study period. These results indicated that the AgA coating on the surface of orthopaedic implants demonstrate good biocompatibility whilst inhibiting bacterial adhesion and colonising of the implant surface.
Resumo:
Flavour release from food is determined by the binding of flavours to other food ingredients and the partition of flavour molecules among different phases. Food emulsions are used as delivery systems for food flavours, and tailored structuring in emulsions provides novel means to better control flavour release. The current study investigated four structured oil-in-water emulsions with structuring in the oil phase, oil-water interface, and water phase. Oil phase structuring was achieved by the formation of monoglyceride (MG) liquid crystals in the oil droplets (MG structured emulsions). Structured interface was created by the adsorption of a whey protein isolate (WPI)-pectin double layer at the interface (multilayer emulsion). Water phase structured emulsions referred to emulsion filled protein gels (EFP gels), where emulsion droplets were embedded in WPI gel network, and emulsions with maltodextrins (MDs) of different dextrose-equivalent (DE) values. Flavour compounds with different physicochemical properties were added into the emulsions, and flavour release (release rate, headspace concentration and air-emulsion partition coefficient) was described by GC headspace analysis. Emulsion structures, including crystalline structure, particle size, emulsion stability, rheology, texture, and microstructures, were characterized using differential scanning calorimetry and X-ray diffraction, light scattering, multisample analytical centrifuge, rheometry, texture analysis, and confocal laser scanning microscopy, respectively. In MG structured emulsions, MG self-assembled into liquid crystalline structures and stable β-form crystals were formed after 3 days of storage at 25 °C. The inclusion of MG crystals allowed tween 20 stabilized emulsions to present viscoelastic properties, and it made WPI stabilized emulsions more sensitive to the change of pH and NaCl concentrations. Flavour compounds in MG structured emulsions had lower initial headspace concentration and air-emulsion partition coefficients than those in unstructured emulsions. Flavour release can be modulated by changing MG content, oil content and oil type. WPI-pectin multilayer emulsions were stable at pH 5.0, 4.0, and 3.0, but they presented extensive creaming when subjected to salt solutions with NaCl ≥ 150 mM and mixed with artificial salivas. Increase of pH from 5.0 to 7.0 resulted in higher headspace concentration but unchanged release rate, and increase of NaCl concentration led to increased headspace concentration and release rate. The study also showed that salivas could trigger higher release of hydrophobic flavours and lower release of hydrophilic flavours. In EFP gels, increases in protein content and oil content contributed to gels with higher storage modulus and force at breaking. Flavour compounds had significantly reduced release rates and air-emulsion partition coefficients in the gels than the corresponding ungelled emulsions, and the reduction was in line with the increase of protein content. Gels with stronger gel network but lower oil content were prepared, and lower or unaffected release rates of the flavours were observed. In emulsions containing maltodextrins, water was frozen at a much lower temperature, and emulsion stability was greatly improved when subjected to freeze-thawing. Among different MDs, MD DE 6 offered the emulsion the highest stability. Flavours had lower air-emulsion partition coefficients in the emulsions with MDs than those in the emulsion without MD. Moreover, the involvement of MDs in the emulsions allowed most flavours had similar release profiles before and after freeze-thaw treatment. The present study provided information about different structured emulsions as delivery systems for flavour compounds, and on how food structure can be designed to modulate flavour release, which could be helpful in the development of functional foods with improved flavour profile.
Resumo:
There are numerous review papers discussing liquid nanoemulsions and how they compare to other emulsion systems. Little research is available on dried nanoemulsions. The objectives of this research were to (i) study the effect of varying the continuous phase of nanoemulsions with different carbohydrate/protein ratios on subsequent emulsion stability, and (ii) compare the physicochemical properties, lactose crystallisation properties, microstructure, and lipid oxidation of spray dried nanoemulsions compared to spray dried conventional emulsions having different water and sugar contents. Nanoemulsions containing sunflower oil (10% w/w), β-casein (2.5–10% w/w) and lactose or trehalose (10–17.5%) were produced following optimisation of the continuous phase by maximising and minimising viscosity and glass transition temperature (Tg’) using mixture design software. Increasing levels of β-casein from caused a significant increase in viscosity, particle size, and nanoemulsion stability, while resulting in a decrease in Tg’. Powders were made from spray drying emulsions/nanoemulsions consisting of lactose or a 70:30 mixture of lactose:sucrose (23.9%), sodium caseinate (5.1%) and sunflower oil (11.5%) in water. Nanoemulsions, produced by microfluidisation (100 MPa), had higher stability and lower viscosity than control emulsions (homogenization at 17 MPa) with lower solvent extractable free fat in the resulting powder. Partial replacement of lactose with sucrose decreased Tg and delayed Tcr. DVS and PLM showed that in powdered nanoemulsions, lactose crystallises faster than in powdered conventional emulsions. Microstructure of both powders (CLSM and cryo-SEM) showed different FGS in powders and different structure post lactose crystallisation. Powdered nanoemulsions had lower pentanal and hexanal (indicators of lipid oxidation) after 24 months storage due to their lower free fat and porosity, measured using a validated GC HS-SPME method, This research has shown the effect of altering the continuous phase of nanoemulsions on microstructure of spray dried nanoemulsions, which affects physical properties, sugar crystallisation, and lipid oxidation.
Resumo:
The significance of the gut microbiota as a determinant of drug pharmacokinetics and accordingly therapeutic response is of increasing importance with the advent of modern medicines characterised by low solubility and/or permeability, or modified-release. These physicochemical properties and release kinetics prolong drug residence times within the gastrointestinal tract, wherein biotransformation by commensal microbes can occur. As the evidence base in support of this supplementary metabolic “organ” expands, novel opportunities to engineer the microbiota for clinical benefit have emerged. This review provides an overview of microbe-mediated alteration of drug pharmacokinetics, with particular emphasis on studies demonstrating proof of concept in vivo. Additionally, recent advances in modulating the microbiota to improve clinical response to therapeutics are explored.
Resumo:
Formulated food systems are becoming more sophisticated as demand grows for the design of structural and nutritional profiles targeted at increasingly specific demographics. Milk protein is an important bio- and techno-functional component of such formulations, which include infant formula, sports supplements, clinical beverages and elderly nutrition products. This thesis outlines research into ingredients that are key to the development of these products, namely milk protein concentrate (MPC), milk protein isolate (MPI), micellar casein concentrate (MCC), β-casein concentrate (BCC) and serum protein concentrate (SPC). MPC powders ranging from 37 to 90% protein (solids basis) were studied for properties of relevance to handling and storage of powders, powder solubilisation and thermal processing of reconstituted MPCs. MPC powders with ≥80% protein were found to have very poor flowability and high compressibility; in addition, these high-protein MPCs exhibited poor wetting and dispersion characteristics during rehydration in water. Heat stability studies on unconcentrated (3.5%, 140°C) and concentrated (8.5%, 120°C) MPC suspensions, showed that suspensions prepared from high-protein MPCs coagulated much more rapidly than lower protein MPCs. β-casein ingredients were developed using membrane processing. Enrichment of β-casein from skim milk was performed at laboratory-scale using ‘cold’ microfiltration (MF) at <4°C with either 1000 kDa molecular weight cut-off or 0.1 µm pore-size membranes. At pilot-scale, a second ‘warm’ MF step at 26°C was incorporated for selective purification of micellised β-casein from whey proteins; using this approach, BCCs with β-casein purity of up to 80% (protein basis) were prepared, with the whey protein purity of the SPC co-product reaching ~90%. The BCC ingredient could prevent supersaturated solutions of calcium phosphate (CaP) from precipitating, although the amorphous CaP formed created large micelles that were less thermo-reversible than those in CaP-free systems. Another co-product of BCC manufacture, MCC powder, was shown to have superior rehydration characteristics compared to traditional MCCs. The findings presented in this thesis constitute a significant advance in the research of milk protein ingredients, in terms of optimising their preparation by membrane filtration, preventing their destabilisation during processing and facilitating their effective incorporation into nutritional formulations designed for consumers of a specific age, lifestyle or health status