4 resultados para Phosphatidylinositol 4-kinase Activity
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults. Its treatment has remained largely unchanged for the past 30 years. Chronic myeloid leukaemia (CML) represents a tremendous success story in the era of targeted therapy but significant challenges remain including the development of drug resistance and disease persistence due to presence of CML stem cells. The Aurora family of kinases is essential for cell cycle regulation and their aberrant expression in cancer prompted the development of small molecules that selectively inhibit their activity. Chapter 2 of this thesis outlines the efficacy and mechanism of action of alisertib, a novel inhibitor of Aurora A kinase, in preclinical models of CML. Alisertib possessed equipotent activity against CML cells expressing unmutated and mutated forms of BCR-ABL. Notably, this agent retained high activity against the T315I and E255K BCR-ABL mutations, which confer the greatest degree of resistance to standard CML therapy. Chapter 3 explores the activity of alisertib in preclinical models of AML. Alisertib disrupted cell viability, diminished clonogenic survival, induced expression of the forkhead box O3 (FOXO3a) targets p27 and BCL-2 interacting mediator (BIM), and triggered apoptosis. A link between Aurora A expression and sensitivity to ara-C was established. Chapter 4 outlines the role of the proto-oncogene serine/threonine-protein (PIM) kinases in resistance to ara-C in AML. We report that the novel small molecule PIM kinase inhibitor SGI-1776 disrupted cell viability and induced apoptosis in AML. We establish a link between ara-C resistance and PIM over-expression. Finally, chapter 5 explores how the preclinical work outlined in this thesis may be translated into clinical studies that may lead to novel therapeutic approaches for patients with refractory myeloid leukaemia.
Resumo:
The Insulin-like Growth Factor 1 Receptor (IGF-1R) has an essential function in normal cell growth and in cancer progression. However, anti-IGF-1R therapies have mostly been withdrawn from clinical trials owing to a lack of efficacy and predictive biomarkers. IGF-1R activity and signalling in cancer cells is regulated by its C-terminal tail, and in particular, by a motif that encompasses tyrosines 1250 and 1251 flanked by serines 1248 and 1252 (1248- SFYYS-1252). Mutation of Y1250/1251 greatly reduces IGF-1-promoted cell migration, interaction with the scaffolding protein RACK1 in the context Integrin signalling, and IGF- 1R kinase activity. Here we investigated the phosphorylation of the SFYYS motif and characterise the conditions under which this motif may be phosphorylated under. As phosphorylated residues, the SFYYS motif may also serve to recruit interacting proteins to the IGF-1R. To this end we identified a novel IGF-1R interacting partner which requires phosphorylated residues in the SFYYS motif to interact with the IGF-1R. This interaction was found to be IGF-1-dependent, and required the scaffold protein RACK1. The interaction of this binding protein with the IGF-1R likely functions to promote maximal phosphorylation of Shc and ERK in IGF-1-stimulated cell migration, and may be important for IGF-1 signalling in cancer cells. Lastly, we have investigated possible kinases that may confer resistance or sensitivity to the IGF-1R kinase inhibitor BMS-754807. In this screen we identified ATR as a mediator of resistance and showed that suppression or chemical inhibition of ATR synergised with BMS-754807 to reduce colony formation. This work has contributes to our understanding of IGF-1R kinase regulation and signalling and suggests that administration of anti-IGF-1R drugs with ATR inhibitors may have therapeutic benefit.
Resumo:
PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.
Resumo:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.