2 resultados para Phonon density of states
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorphous and hydrogenated amorphous silicon and interfaces of amorphous and crystalline silicon, with the ultimate aim of understanding the photovoltaic properties of core-shell crystalline amorphous Si nanowire structures. We have shown, unexpectedly, from the simulations, that our understanding of hydrogenated bulk a-Si needs to be revisited, with our robust finding that when fully saturated with hydrogen, bulk a-Si exhibits a constant optical energy gap, irrespective of the hydrogen concentration in the sample. Unsaturated a-Si:H, with a lower than optimum hydrogen content, shows a smaller optical gap, that increases with hydrogen content until saturation is reached. The mobility gaps obtained from an analysis of the electronic states show similar behavior. We also obtained that the optical and mobility gaps show a volcano curve as the H content is varied from 7% (undersaturation) to 18% (mild oversaturation). In the case of mild over saturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structures shows the extra H atoms in this case form a bridge between neighboring silicon atoms which increases the corresponding Si-Si distance and promotes bond length disorder in the sample. That has the potential to enhance the Staebler-Wronski effect. Planar interface models of amorphous-crystalline silicon have been generated in Si (100), (110) and (111) surfaces. The interface models are characterized by structure, RDF, electronic density of states and optical absorption spectrum. We find that the least stable (100) surface will result in the formation of the thickest amorphous silicon layer, while the most stable (110) surface forms the smallest amorphous region. We calculated for the first time band offsets of a-Si:H/c-Si heterojunctions from first principles and examined the influence of different surface orientations and amorphous layer thickness on the offsets and implications for device performance. The band offsets depend on the amorphous layer thickness and increase with thickness. By controlling the amorphous layer thickness we can potentially optimise the solar cell parameters. Finally, we have successfully generated different amorphous layer thickness of the a-Si/c-Si and a-Si:H/c-Si 5 nm nanowires from heat and quench. We perform structural analysis of the a-Si-/c-Si nanowires. The RDF, Si-Si bond length distributions, and the coordination number distributions of amorphous regions of the nanowires reproduce similar behaviour compared to bulk amorphous silicon. In the final part of this thesis we examine different surface terminating chemical groups, -H, - OH and –NH2 in (001) GeNW. Our work shows that the diameter of Ge nanowires and the nature of surface terminating groups both play a significant role in both the magnitude and the nature of the nanowire band gaps, allowing tuning of the band gap by up to 1.1 eV. We also show for the first time how the nanowire diameter and surface termination shifts the absorption edge in the Ge nanowires to longer wavelengths. Thus, the combination of nanowire diameter and surface chemistry can be effectively utilised to tune the band gaps and thus light absorption properties of small diameter Ge nanowires.
Resumo:
This thesis examines the tension between patent rights and the right to health and it recognizes patent rights on pharmaceutical products as one of the factors responsible for the problem of lack of access to affordable medicines in developing countries. The thesis contends that, in order to preserve their patent policy space and secure access to affordable medicines for their citizens, developing countries should incorporate a model of human rights into the design, implementation, interpretation, and enforcement of their national patent laws. The thesis provides a systematic analysis of court decisions from four key developing countries (Brazil, India, Kenya, and South Africa) and it assesses how the national courts in these countries resolve the tension between patent rights and the right to health. Essentially, this thesis demonstrates how a model of human rights can be incorporated into the adjudication of disputes involving patent rights in national courts. Focusing specifically on Brazil, the thesis equally demonstrates how policy makers and law makers at the national level can incorporate a model of human rights into the design or amendment of their national patent law. This thesis also contributes to the ongoing debate in the field of business and human rights with regard to the mechanisms that can be used to hold corporate actors accountable for their human rights responsibilities. This thesis recognizes that, while states bear the primary responsibility to respect, protect, and fulfil the right to health, corporate actors such as pharmaceutical companies also have a baseline responsibility to respect the right to health. This thesis therefore contends that pharmaceutical companies that own patent rights on pharmaceutical products can be held accountable for their right to health responsibilities at the national level through the incorporation of a model of civic participation into a country’s patent law system.