2 resultados para Petroleum in submerged lands
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
A multi-disciplinary study was conducted to compare stands of ancient and secondary origin within a single wood, the Gearagh woodland, County Cork. These sites were compared with adjacent areas of grassland, which provided a reference for the former land-use (pasture) of the secondary woodland. A historical study confirmed that while the core of the Gearagh has been subject to minimal human interference, other sections have been cleared in the past for agricultural purposes. Investigations into soil structure and composition showed that soil properties in these secondary woodland areas were significantly altered by this past woodland clearance and conversion to agriculture, while the soil of the ancient woodland showed little signs of disturbance. The vegetation community also differed between the two woodland areas, partly due to altered environmental conditions. Many of the ancient woodland plant species were unable to form a persistent seed bank, while there was increased representation of species associated with more open-habitat conditions in the seed bank of the secondary woodland. While germination of woodland species was low in all sites, overall, seeds tended to germinate more successfully in the ancient woodland. The ancient woodland also provided a suitable habitat for many soil and ground detritivores, most notably enchytraeids, although earthworms were not abundant. Past agricultural use, however, changed the decomposer community considerably, with increased representation of earthworm species and a decline in the abundance of enchytraeids in the secondary stands. In conclusion, the legacies of historical agricultural activities can continue to significantly affect the structure and composition of present-day woodlands so that they may differ considerably from undisturbed ancient woodland stands, even within the same woodland. A greater understanding of the origin, development and ecological functioning of ancient woodlands should aid in determining future conservation and management requirements.
Resumo:
The development of a new bioprocess requires several steps from initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) safety of consumption, (ii) stability of the pigments to the food processing conditions required by the products where they will be incorporated and (iii) high production yields so that production costs are reasonable. Of these requirements the first involves the highest research costs and the practical application of this type of processes may face several hurdles until final regulatory approval as a new food ingredient. Therefore, before going through expensive research to have them accepted as new products, the process potential should be assessed early on, and this brings forward pigment stability studies and process optimisation goals. Only ingredients that are usable in economically feasible conditions should progress to regulatory approval. This thesis covers these two aspects, stability and process optimisation, for a potential new ingredient; natural red colour, produced by microbial fermentation. The main goal was to design, optimise and scale-up the production process of red pigments by Penicillium purpurogenum GH2. The approach followed to reach this objective was first to establish that pigments produced by Penicillium purpurogenum GH2 are sufficiently stable under different processing conditions (thermal and non-thermal) that can be found in food and textile industries. Once defined that pigments were stable enough, the work progressed towards process optimisation, aiming for the highest productivity using submerged fermentation as production culture. Optimum production conditions defined at flask scale were used to scale up the pigment production process to a pilot reactor scale. Finally, the potential applications of the pigments were assessed. Based on this sequence of specific targets, the thesis was structured in six parts, containing a total of nine chapters. Engineering design of a bioprocess for the production of natural red colourants by submerged fermentation of the thermophilic fungus Penicillium purpurogenum GH2.