2 resultados para Personal Control
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In this paper, a wireless sensor network mote hardware design and implementation are introduced for building deployment application. The core of the mote design is based on the 8 bit AVR microcontroller, Atmega1281 and 2.4 GHz wireless communication chip, CC2420. The module PCB fabrication is using the stackable technology providing powerful configuration capability. Three main layers of size 25 mm2 are structured to form the mote; these are RF, sensor and power layers. The sensors were selected carefully to meet both the building monitoring and design requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks. Experiments show that the developed mote works effectively in giving stable data acquisition and owns good communication and power performance.
Resumo:
The mobile cloud computing model promises to address the resource limitations of mobile devices, but effectively implementing this model is difficult. Previous work on mobile cloud computing has required the user to have a continuous, high-quality connection to the cloud infrastructure. This is undesirable and possibly infeasible, as the energy required on the mobile device to maintain a connection, and transfer sizeable amounts of data is large; the bandwidth tends to be quite variable, and low on cellular networks. The cloud deployment itself needs to efficiently allocate scalable resources to the user as well. In this paper, we formulate the best practices for efficiently managing the resources required for the mobile cloud model, namely energy, bandwidth and cloud computing resources. These practices can be realised with our mobile cloud middleware project, featuring the Cloud Personal Assistant (CPA). We compare this with the other approaches in the area, to highlight the importance of minimising the usage of these resources, and therefore ensure successful adoption of the model by end users. Based on results from experiments performed with mobile devices, we develop a no-overhead decision model for task and data offloading to the CPA of a user, which provides efficient management of mobile cloud resources.