3 resultados para PRIMARY STRUCTURE

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an investigation on the development of a numerical assessment method for the hydrodynamic performance of an oscillating water column (OWC) wave energy converter. In the research work, a systematic study has been carried out on how the hydrodynamic problem can be solved and represented reliably, focusing on the phenomena of the interactions of the wave-structure and the wave-internal water surface. These phenomena are extensively examined numerically to show how the hydrodynamic parameters can be reliably obtained and used for the OWC performance assessment. In studying the dynamic system, a two-body system is used for the OWC wave energy converter. The first body is the device itself, and the second body is an imaginary “piston,” which replaces part of the water at the internal water surface in the water column. One advantage of the two-body system for an OWC wave energy converter is its physical representations, and therefore, the relevant mathematical expressions and the numerical simulation can be straightforward. That is, the main hydrodynamic parameters can be assessed using the boundary element method of the potential flow in frequency domain, and the relevant parameters are transformed directly from frequency domain to time domain for the two-body system. However, as it is shown in the research, an appropriate representation of the “imaginary” piston is very important, especially when the relevant parameters have to be transformed from frequency-domain to time domain for a further analysis. The examples given in the research have shown that the correct parameters transformed from frequency domain to time domain can be a vital factor for a successful numerical simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study on the numerical simulation of the primary wave energy conversion in the oscillating water column (OWC) wave energy converters (WECs). The new proposed numerical approach consists of three major components: potential flow analysis for the conventional hydrodynamic parameters, such as added mass, damping coefficients, restoring force coefficients and wave excitations; the thermodynamic analysis of the air in the air chamber, which is under the assumptions of the given power take-off characteristics and an isentropic process of air flow. In the formulation, the air compressibility and its effects have been included; and a time-domain analysis by combining the linear potential flow and the thermodynamics of the air flow in the chamber, in which the hydrodynamics and thermodynamics/aerodynamics have been coupled together by the force generated by the pressurised and de-pressurised air in the air chamber, which in turn has effects on the motions of the structure and the internal water surface. As an example, the new developed approach has been applied to a fixed OWC device. The comparisons of the measured data and the simulation results show the new method is very capable of predicting the performance of the OWC devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since precise linear actuators of a compliant parallel manipulator suffer from their inability to tolerate the transverse motion/load in the multi-axis motion, actuation isolation should be considered in the compliant manipulator design to eliminate the transverse motion at the point of actuation. This paper presents an effective design method for constructing compliant parallel manipulators with actuation isolation, by adding the same number of actuation legs as the number of the DOF (degree of freedom) of the original mechanism. The method is demonstrated by two design case studies, one of which is quantitatively studied by analytical modelling. The modelling results confirm possible inherent issues of the proposed structure design method such as increased primary stiffness, introduced extra parasitic motions and cross-axis coupling motions.