3 resultados para POLYACRYLAMIDE GELS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bacteriocin-producing strain of Lactobacillus paracasei DPC 4715 was used as an adjunct culture in Cheddar cheese in order to control the growth of “wild” nonstarter lactic acid bacteria. No suppression of growth of the indicator strain was observed in the experimental cheese. The bacteriocin produced by Lactobacillus paracasei DPC 4715 was sensitive to chymosin and cathepsin D and it may have been cleaved by the rennet used for the cheese manufactured or by indigenous milk proteases. A series of studies were performed using various microbial adjuncts to influence cheese ripening. Microbacterium casei DPC 5281, Corynebacterium casei DPC 5293 and Corynebacterium variabile DPC 5305 were added to the cheesemilk at level of 109 cfu/ml resulting in a final concentration of 108 cfu/g in Cheddar cheese. The strains significantly increased the level of pH 4.6-soluble nitrogen, total free amino acids after 60 and 180 d of ripening and some individual free amino acids after 180 d. Yarrowia lipolytica DPC 6266, Yarrowia lipolytica DPC 6268 and Candida intermedia DPC 6271 were used to accelerate the ripening of Cheddar cheese. Strains were grown in YG broth to a final concentration of 107 cfu/ml, microfluidized, freeze-dried and added to the curd during salting at level of 2% w/w. The yeasts positively affected the primary, secondary proteolysis and lipolysis of cheeses and had aminopeptidase, dipeptidase, esterase and 5’ phosphodiestere activities that contributed to accelerate the ripening and improve the flavor of cheese. Hafia alvei was added to Cheddar cheesemilk at levels of 107 cfu/ml and 108 cfu/ml and its contribution during ripening was evaluated. The strain significantly increased the level of pH 4.6-soluble nitrogen, total free amino-acids, and some individual free amino-acids of Cheddar cheese, whereas no differences in the urea-polyacrylamide gel electrophoresis (urea-PAGE) electrophoretograms of the cheeses were detected. Hafia alvei also significantly increased the level of some biogenic amines. A low-fat Cheddar cheese was made with Bifidobacterium animalis subsp. lactis, strain BB-12® at level of 108 cfu/ml, as a probiotic adjunct culture and Hi-Maize® 260 (resistant high amylose maize starch) at level of 2% and 4% w/v, as a prebiotic fiber which also played the role of fat replacer. Bifidobacterium BB-12 decreased by 1 log cycle after 60 d of ripening and remained steady at level of ~107 cfu/g during ripening. The Young’s modulus also increased proportionally with increasing levels of Hi-maize. Hencky strain at fracture decreased over ripening and increased with increasing in fat replacer. A cheese based medium (CBM) was developed with the purpose of mimicking the cheese environment at an early ripening stage. The strains grown in CBM showed aminopeptidase activity against Gly-, Arg-, Pro- and Phe-p-nitroanalide, whereas, when grown in MRS they were active against all the substrates tested. Both Lb. danicus strains grown in MRS and in CBM had aminotransferase activity towards aromatic amino acids (Phe and Trp) and also branched-chain amino acids (Leu and Val). Esterase activity was expressed against p-nitrophenyl-acetate (C2), pnitrophenyl- butyrate (C4) and p-nitrophenyl-palmitate (C16) and was significantly higher in CBM than in MRS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physicochemical properties of cheese and milk gels are greatly influenced by molecular interactions between the casein proteins involving calcium. Novel experiments were designed to investigate the relationship between insoluble caseinbound cations and rheological properties of Cheddar cheese and rennet-induced milk gels. Cheddar cheese and rennet-induced milk gels were supplemented with Mg2+ or Sr2+ to compare their effects on their rheological properties to those previously reported in literature for Ca2+ supplementation. Sr2+ displayed behaviour similar to Ca2+ as observed by its ability to increase the rigidity of cheese and rennet milk gels and also decrease cheese meltability. Mg+2 had no influence on cheese rheological properties and was greatly inferior to Ca2+ and Sr2+ in its ability to increase rennet milk gel elasticity. Cheddar cheese was supplemented with the calcium-chelating salts trisodium citrate, disodium hydrogen phosphate or disodium EDTA, in an attempt to reduce the CCP content of cheese and thereby modify its rheological and functional properties. TSC and EDTA were successful in decreasing cheese CCP, whereas DSP caused an initial increase in CCP content. Cheddar cheese was supplemented with chlorides of iron, copper and zinc at salting to investigate the effects of concentrations of these elements in excess of those found innately or commonly in fortification studies, with emphasis on mineral equilibria changes and resultant alteration of rheological properties. Zinc addition was the only added metal that significantly influenced cheese rheological properties, leading to an increase in cheese rigidity and decreased cheese melt at elevated temperatures. Gum tragacanth was used as a fat-replacer in the manufacture of reduced-fat Cheddar cheese, in an attempt to improve the rheological, functional and sensory properties of reduced-fat Cheddar. Overall, the experimental work reported in this thesis generated new knowledge and theories about how casein-mineral interactions influence rheological properties of casein systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flavour release from food is determined by the binding of flavours to other food ingredients and the partition of flavour molecules among different phases. Food emulsions are used as delivery systems for food flavours, and tailored structuring in emulsions provides novel means to better control flavour release. The current study investigated four structured oil-in-water emulsions with structuring in the oil phase, oil-water interface, and water phase. Oil phase structuring was achieved by the formation of monoglyceride (MG) liquid crystals in the oil droplets (MG structured emulsions). Structured interface was created by the adsorption of a whey protein isolate (WPI)-pectin double layer at the interface (multilayer emulsion). Water phase structured emulsions referred to emulsion filled protein gels (EFP gels), where emulsion droplets were embedded in WPI gel network, and emulsions with maltodextrins (MDs) of different dextrose-equivalent (DE) values. Flavour compounds with different physicochemical properties were added into the emulsions, and flavour release (release rate, headspace concentration and air-emulsion partition coefficient) was described by GC headspace analysis. Emulsion structures, including crystalline structure, particle size, emulsion stability, rheology, texture, and microstructures, were characterized using differential scanning calorimetry and X-ray diffraction, light scattering, multisample analytical centrifuge, rheometry, texture analysis, and confocal laser scanning microscopy, respectively. In MG structured emulsions, MG self-assembled into liquid crystalline structures and stable β-form crystals were formed after 3 days of storage at 25 °C. The inclusion of MG crystals allowed tween 20 stabilized emulsions to present viscoelastic properties, and it made WPI stabilized emulsions more sensitive to the change of pH and NaCl concentrations. Flavour compounds in MG structured emulsions had lower initial headspace concentration and air-emulsion partition coefficients than those in unstructured emulsions. Flavour release can be modulated by changing MG content, oil content and oil type. WPI-pectin multilayer emulsions were stable at pH 5.0, 4.0, and 3.0, but they presented extensive creaming when subjected to salt solutions with NaCl ≥ 150 mM and mixed with artificial salivas. Increase of pH from 5.0 to 7.0 resulted in higher headspace concentration but unchanged release rate, and increase of NaCl concentration led to increased headspace concentration and release rate. The study also showed that salivas could trigger higher release of hydrophobic flavours and lower release of hydrophilic flavours. In EFP gels, increases in protein content and oil content contributed to gels with higher storage modulus and force at breaking. Flavour compounds had significantly reduced release rates and air-emulsion partition coefficients in the gels than the corresponding ungelled emulsions, and the reduction was in line with the increase of protein content. Gels with stronger gel network but lower oil content were prepared, and lower or unaffected release rates of the flavours were observed. In emulsions containing maltodextrins, water was frozen at a much lower temperature, and emulsion stability was greatly improved when subjected to freeze-thawing. Among different MDs, MD DE 6 offered the emulsion the highest stability. Flavours had lower air-emulsion partition coefficients in the emulsions with MDs than those in the emulsion without MD. Moreover, the involvement of MDs in the emulsions allowed most flavours had similar release profiles before and after freeze-thaw treatment. The present study provided information about different structured emulsions as delivery systems for flavour compounds, and on how food structure can be designed to modulate flavour release, which could be helpful in the development of functional foods with improved flavour profile.