7 resultados para POINCARE GROUP
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This qualitative descriptive study explores the lived experience for persons with a high cervical spinal cord injury who have Electronic Aids to Daily Living (EADLs), and for persons who have no EADLs. Fifteen people with cervical spinal cord injuries attended four focus groups. Data analysis uncovered a novel framework of several themes that were organised into three categories: experiences, desires and meanings of living with EADL. Users’ and non users’ groups revealed homogenous themes. Experiences and desires are explored further in this paper. Themes within the category of experiences included: EADL devices, supply support and training, abandonment, mouthsticks and powered wheelchairs. Desires included: simple stuff, reliability, aesthetics and voice activation. Findings offer valuable personal insights about life with EADL to be considered by all involved with EADL.
Resumo:
Semiconductor nanowires, particularly group 14 semiconductor nanowires, have been the subject of intensive research in the recent past. They have been demonstrated to provide an effective, versatile route towards the continued miniaturisation and improvement of microelectronics. This thesis aims to highlight some novel ways of fabricating and controlling various aspects of the growth of Si and Ge nanowires. Chapter 1 highlights the primary technique used for the growth of nanowires in this study, namely, supercritical fluid (SCF) growth reactions. The advantages (and disadvantages) of this technique for the growth of Si and Ge nanowires are highlighted, citing numerous examples from the past ten years. The many variables involved in this technique are discussed along with the resultant characteristics of nanowires produced (diameter, doping, orientation etc.). Chapter 2 outlines the experimental methodologies used in this thesis. The analytical techniques used for the structural characterisation of nanowires produced are also described as well as the techniques used for the chemical analysis of various surface terminations. Chapter 3 describes the controlled self-seeded growth of highly crystalline Ge nanowires, in the absence of conventional metal seed catalysts, using a variety of oligosilylgermane precursors and mixtures of germane and silane compounds. A model is presented which describes the main stages of self-seeded Ge nanowire growth (nucleation, coalescence and Ostwald ripening) from the oligosilylgermane precursors and in conjunction with TEM analysis, a mechanism of growth is proposed. Chapter 4 introduces the metal assisted etching (MAE) of Si substrates to produce Si nanowires. A single step metal-assisted etch (MAE) process, utilising metal ion-containing HF solutions in the absence of an external oxidant, was developed to generate heterostructured Si nanowires with controllable porous (isotropically etched) and non-porous (anisotropically etched) segments. In Chapter 5 the bottom-up growth of Ge nanowires, similar to that described in Chapter 3, and the top down etching of Si, described in Chapter 4, are combined. The introduction of a MAE processing step in order to “sink” the Ag seeds into the growth substrate, prior to nanowire growth, is shown to dramatically decrease the mean nanowire diameters and to narrow the diameter distributions. Finally, in Chapter 6, the biotin – streptavidin interaction was explored for the purposes of developing a novel Si junctionless nanowire transistor (JNT) sensor.
Resumo:
Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.
Resumo:
In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.
Resumo:
Phages belonging to the 936 group represent one of the most prevalent and frequently isolated phages in dairy fermentation processes using Lactococcus lactis as the primary starter culture. In recent years extensive research has been carried out to characterise this phage group at a genomic level in an effort to understand how the 936 group phages dominate this particular niche and cause regular problems during large scale milk fermentations. This thesis describes a large scale screening of industrial whey samples, leading to the isolation of forty three genetically different lactococcal phages. Using multiplex PCR, all phages were identified as members of the 936 group. The complete genome of thirty eight of these phages was determined using next generation sequencing technologies which identified several regions of divergence. These included the structural region surrounding the major tail protein, the replication region as well as the genes involved in phage DNA packing. For a number of phages the latter genomic region was found to harbour genes encoding putative orphan methyltransferases. Using small molecule real time (SMRT) sequencing and heterologous gene expression, the target motifs for several of these MTases were determined and subsequently shown to actively protect phage DNA from restriction endonuclease activity. Comparative analysis of the thirty eight phages with fifty two previously sequenced members of this group showed that the core genome consists of 28 genes, while the non-core genome was found to fluctuate irrespective of geographical location or time of isolation. This study highlights the continued need to perform large scale characterisation of the bacteriophage populations infecting industrial fermentation facilities in effort to further our understanding dairy phages and ways to control their proliferation.
Resumo:
Group IV materials such as silicon nanocrystals (Si NCs) and carbon quantum dots (CQDs) have received great attention as new functional materials with unique physical/chemical properties that are not found in the bulk material. This thesis reports the synthesis and characterisation of both types of nanocrystal and their application as fluorescence probes for the detection of metal ions. In chapter 2, a simple method is described for the size controlled synthesis of Si NCs within inverse micelles having well defined core diameters ranging from 2 to 6 nm using inert atmospheric synthetic methods. In addition, ligands with different molecular structures were utilised to reduce inter-nanocrystal attraction forces and improve the stability of the NC dispersions in water and a variety of organic solvents. Regulation of the Si NCs size is achieved by variation of the surfactants and addition rates, resulting high quality NCs with standard deviations (σ = Δd/d) of less than 10 %. Large scale production of highly mondisperse Si NC was also successfully demonstrated. In chapter 3, a simple solution phase synthesis of size monodisperse carbon quantum dots (CQDs) using a room temperature microemulsion strategy is demonstrated. The CQDs are synthesized in reverse micelles via the reduction of carbon tetrachloride using a hydride reducing agent. CQDs may be functionalised with covalently attached alkyl or amine monolayers, rendering the CQDs dispersible in wide range of polar or non-polar solvents. Regulation of the CQDs size was achieved by utilizing hydride reducing agents of different strengths. The CQDs possess a high photoluminescence quantum yield in the visible region and exhibit excellent photostability. In chapter 4, a simple and rapid assay for detection of Fe3+ ions was developed, based on quenching of the strong blue-green Si NC photoluminescence. The detection method showed a high selectivity, with only Fe3+ resulting in strong quenching of the fluorescence signal. No quenching of the fluorescence signal was induced by Fe2+ ions, allowing for solution phase discrimination between the same ion in different charge states. The optimised sensor system showed a sensitive detection range from 25- 900 μM and a limit of detection of 20.8 μM
Resumo:
The influence of communication technology on group decision-making has been examined in many studies. But the findings are inconsistent. Some studies showed a positive effect on decision quality, other studies have shown that communication technology makes the decision even worse. One possible explanation for these different findings could be the use of different Group Decision Support Systems (GDSS) in these studies, with some GDSS better fitting to the given task than others and with different sets of functions. This paper outlines an approach with an information system solely designed to examine the effect of (1) anonymity, (2) voting and (3) blind picking on decision quality, discussion quality and perceived quality of information.