3 resultados para PIC 18F8722

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for optical bandwidth continues to increase year on year and is being driven primarily by entertainment services and video streaming to the home. Current photonic systems are coping with this demand by increasing data rates through faster modulation techniques, spectrally efficient transmission systems and by increasing the number of modulated optical channels per fibre strand. Such photonic systems are large and power hungry due to the high number of discrete components required in their operation. Photonic integration offers excellent potential for combining otherwise discrete system components together on a single device to provide robust, power efficient and cost effective solutions. In particular, the design of optical modulators has been an area of immense interest in recent times. Not only has research been aimed at developing modulators with faster data rates, but there has also a push towards making modulators as compact as possible. Mach-Zehnder modulators (MZM) have proven to be highly successful in many optical communication applications. However, due to the relatively weak electro-optic effect on which they are based, they remain large with typical device lengths of 4 to 7 mm while requiring a travelling wave structure for high-speed operation. Nested MZMs have been extensively used in the generation of advanced modulation formats, where multi-symbol transmission can be used to increase data rates at a given modulation frequency. Such nested structures have high losses and require both complex fabrication and packaging. In recent times, it has been shown that Electro-absorption modulators (EAMs) can be used in a specific arrangement to generate Quadrature Phase Shift Keying (QPSK) modulation. EAM based QPSK modulators have increased potential for integration and can be made significantly more compact than MZM based modulators. Such modulator designs suffer from losses in excess of 40 dB, which limits their use in practical applications. The work in this thesis has focused on how these losses can be reduced by using photonic integration. In particular, the integration of multiple lasers with the modulator structure was considered as an excellent means of reducing fibre coupling losses while maximising the optical power on chip. A significant difficultly when using multiple integrated lasers in such an arrangement was to ensure coherence between the integrated lasers. The work investigated in this thesis demonstrates for the first time how optical injection locking between discrete lasers on a single photonic integrated circuit (PIC) can be used in the generation of coherent optical signals. This was done by first considering the monolithic integration of lasers and optical couplers to form an on chip optical power splitter, before then examining the behaviour of a mutually coupled system of integrated lasers. By operating the system in a highly asymmetric coupling regime, a stable phase locking region was found between the integrated lasers. It was then shown that in this stable phase locked region the optical outputs of each laser were coherent with each other and phase locked to a common master laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims To investigate the relationship between unilateral PIC and specific dentofacial parameters. Materials and methods A sample of 216 subjects, with 108 subjects in the retrospective and prospective samples respectively. Dental parameters: The following dental parameters were assessed: Inter-canine and intermolar width; palatal depth and palatal area; anterior Bolton tooth-size discrepancy (TSD); maxillary arch shape and ratio and maxillary central and lateral incisor shape and ratio. Facial parameters: Three-dimensional (3D) images were taken for subjects in the prospective sample only, and were used to assess the following facial parameters: Face shape; face ratio and 3D distances and angles. Results Dental parameters: Inter-canine width was significantly smaller in the test group compared to the control group in the retrospective (p= 0.0002) and prospective (p= 0.0018) samples respectively. Anterior Bolton TSD was significantly higher in the prospective test group compared to controls (p= 0.0070). Arch ratio was significantly smaller in the test group than the control group for the retrospective sample (p= 0.0029), whereas no significant difference was recorded in the prospective sample (p= 0.1017). Arch shape distribution was significantly different in the retrospective sample (p= 0.009). Tooth shape distribution was significantly different for the maxillary right central incisor in the retrospective sample (p= 0.030). Tooth ratio showed no significant difference for both samples. Facial parameters: Basal width was significantly smaller in the test compared to the control group (p= 0.0001). No significant difference was found in all other 3D distances and angles measured. Conclusion Inter-canine width was significantly smaller in unilateral PIC subjects compared to controls. Anterior Bolton TSD was significantly higher in prospective unilateral PIC compared to controls. Maxillary arch ratio was significantly smaller in retrospective subjects. Square/tapered tooth shape was significantly more common in the retrospective group. Basal width was significantly smaller in subjects with unilateral PIC than controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dedicated multi-project wafer (MPW) runs for photonic integrated circuits (PICs) from Si foundries mean that researchers and small-to-medium enterprises (SMEs) can now afford to design and fabricate Si photonic chips. While these bare Si-PICs are adequate for testing new device and circuit designs on a probe-station, they cannot be developed into prototype devices, or tested outside of the laboratory, without first packaging them into a durable module. Photonic packaging of PICs is significantly more challenging, and currently orders of magnitude more expensive, than electronic packaging, because it calls for robust micron-level alignment of optical components, precise real-time temperature control, and often a high degree of vertical and horizontal electrical integration. Photonic packaging is perhaps the most significant bottleneck in the development of commercially relevant integrated photonic devices. This article describes how the key optical, electrical, and thermal requirements of Si-PIC packaging can be met, and what further progress is needed before industrial scale-up can be achieved.