4 resultados para PHOTOACOUSTIC-SPECTROSCOPY

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel spectroscopic method, incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), has been modified and extended to measure absorption spectra in the near-ultraviolet with high sensitivity. The near-ultraviolet region extends from 300 to 400 nm and is particularly important in tropospheric photochemistry; absorption of near-UV light can also be exploited for sensitive trace gas measurements of several key atmospheric constituents. In this work, several IBBCEAS instruments were developed to record reference spectra and to measure trace gas concentrations in the laboratory and field. An IBBCEAS instrument was coupled to a flow cell for measuring very weak absorption spectra between 335 and 375 nm. The instrument was validated against the literature absorption spectrum of SO2. Using the instrument, we report new absorption cross-sections of O3, acetone, 2-butanone, and 2-pentanone in this spectral region, where literature data diverge considerably owing to the extremely weak absorption. The instrument was also applied to quantifying low concentrations of the short-lived radical, BrO, in the presence of strong absorption by Br2 and O3. A different IBBCEAS system was adapted to a 4 m3 atmosphere simulation chamber to record the absorption cross-sections of several low vapour pressure compounds, which are otherwise difficult to measure. Absorption cross-sections of benzaldehyde and the more volatile alkyl nitrites agree well with previous spectra; on this basis, the cross-sections of several nitrophenols are reported for the first time. In addition, the instrument was also used to study the optical properties of secondary organic aerosol formed following the photooxidation of isoprene. An extractive IBBCEAS instrument was developed for detecting HONO and NO2 and had a sensitivity of about 10-9 cm-1. This instrument participated in a major international intercomparison of HONO and NO2 measurements held in the EUPHORE simulation chamber in Valencia, Spain, and results from that campaign are also reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorescence excitation spectra of two thiones, 4-H-1-xanthione (XT) and 4-H-1-pyrane-4-thione (PT), cooled in a supersonic jet were investigated. The vibronic lineshape of the T1z origin of PT measured by cavity ring-down spectroscopy is considered and the excited state rotational constants are calculated. For XT the 3A2(nπ* ) → X1A1 phosphorescence excitation spectrum was investigated in the region 14900-17600 cm-1. The structure observed is shown to be due to the T1← S0 absorption and an assignment in terms of the vibronic structure of the band is proposed. A previous assignment of the S1 ← S0 origin is considered and the transition involved is shown to be most probably due to the absorption of a vibronic tiplet state T1z,v7. An alternative but tentative assignment of the S1,0 ←S0,0 transition is suggested. In the case of PT the phosphorescence excitation spectrum was investigated in the region of the 1A2(ππ*) ← X1A1 absorption band between 27300 and 28800 cm-1. The spectrum exhibits complex features which are typical for the strong vibronic coupling case of two adjacent electronic states. The observed intermediate level structure was attributed to the coupling with a lower lying dark electronic state 1B1(nπ*2), whose origin was estimated to be ~ 825 - 1025 cm-1 below the origin of 1A2(ππ*)0. Consequences of the vibronic coupling on the decay dynamics of 1A2(ππ*) as well as tentative assignments of vibronic transitions 1A2(ππ*)v ← X1A1 are also discussed. In the T1z ← S0 cavity ring-down absorption spectrum of PT, the vibronic lineshape of the T1z origin is analysed. As the T1z line is separated from the T1x,1y lines by a large zero-field splitting it is possible to use an Asyrot-like program to calculate the vibrational-rotational parameters determining the lineshape. It is shown that PT is non-planar in the first excited triplet state and the lineshape is composed of a mixture of A-type and C-type bandshapes. The non-planarity of PT is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a magneto-optical trap setup is used to laser cool and confine a cloud of 85Rb. The cloud typically contains 108 atoms in a 1 mm3 volume at a temperature in the region of the Doppler Limit (146 _K for 85Rb). To study the cold cloud, a subwavelength optical fibre - a nanofibre, or ONF - is positioned inside the cloud. The ONF can be used in two ways. Firstly, it is an efficient fluorescence collection tool for the cold atoms. Loading times, lifetimes and temperatures can be measured by coupling the atomic fluorescence to the evanescent region of the ONF. Secondly, the ONF is used as a probe beam delivery tool using the evanescent field properties of the device, allowing one to perform spectroscopy on few numbers of near-surface atoms. With improvements in optical density of the cloud, this system is an ideal candidate in which to generate electromagnetically induced transparency and slow light. A theoretical study of the van der Waals and Casimir-Polder interactions between an atom and a dielectric surface is also presented in this work in order to understand their effects in the spectroscopy of near-surface atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although broadband incoherent light does not efficiently couple into a high-finesse optical cavity, its transmission is readily detectable and enables applications in cavity-enhanced absorption spectroscopy in the gas phase, liquid phase and on surfaces. This chapter gives an overview of measurement principles and experimental approaches implementing incoherent light sources in cavity-enhanced spectroscopic applications. The general principles of broadband CEAS are outlined and general “pros and cons” discussed, detailing aspects like cavity mirror reflectivity calibration or the establishment of detection limits. Different approaches concerning light sources, cavity design and detection schemes are discussed and a comprehensive overview of the current literature based on a methodological classification scheme is also presented.