2 resultados para PD(110)
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Metal oxide clusters of sub-nm dimensions dispersed on a metal oxide support are an important class of catalytic materials for a number of key chemical reactions, showing enhanced reactivity over the corresponding bulk oxide. In this paper we present the results of a density functional theory study of small sub-nm TiO2 clusters, Ti2O4, Ti3O6 and Ti4O8 supported on the rutile (110) surface. We find that all three clusters adsorb strongly with adsorption energies ranging from -3 eV to -4.5 eV. The more stable adsorption structures show a larger number of new Ti-O bonds formed between the cluster and the surface. These new bonds increase the coordination of cluster Ti and O as well as surface oxygen, so that each has more neighbours. The electronic structure shows that the top of the valence band is made up of cluster derived states, while the conduction band is made up of Ti 3d states from the surface, resulting in a reduction of the effective band gap and spatial separation of electrons and holes after photon absorption, which shows their potential utility in photocatalysis. To examine reactivity, we study the formation of oxygen vacancies in the cluster-support system. The most stable oxygen vacancy sites on the cluster show formation energies that are significantly lower than in bulk TiO2, demonstrating the usefulness of this composite system for redox catalysis.
Resumo:
Geiparvarin is a natural product which contains both a 3(2H)-furanone and a coumarin moiety in its structure. The aim of this project was to investigate the use of Pd(0)-mediated C–C bondforming reactions to produce structurally modified geiparvarins. Chapter 1 consists of a review of the relevant literature, including that pertaining to the syntheses of selected naturally occurring 3(2H)-furanones. The known syntheses of geiparvarin and closely related analogues are examined, along with the documented biological activity of these compounds. The synthetic routes which allow access to 4-substituted-3(2H)-furanones are also described. Chapter 2 describes in detail the synthesis of a variety of novel structurally modified geiparvarins by two complementary routes, both approaches utilising Pd(0)-mediated crosscoupling reactions, and discusses the characterisation of these compounds. The preparation of 5-ethyl-3(2H)-furanones is described, as is their incorporation into geiparvarin and the corresponding 5″-alkylgeiparvarin analogues via formation and dehydration of intermediate alcohols. Halogenation of 5-ethyl-3(2H)-furanones and the corresponding geiparvarin derivatives is discussed, along with further reactions of the resulting halides. Preparation of 3″-arylgeiparvarins involving both Suzuki–Miyura and Stille reactions, using the appropriate intermediate iodides and bromides, is described. The application of Stille and Heck conditions to give 3″-ethenylgeiparvarin analogues and Sonogashira conditions to produce 3″-ethynylgeiparvarin analogues, using the relevant intermediate iodides, is also extensively outlined. Chapter 3 contains all of the experimental data and details of the synthetic methods employed for the compounds prepared during the course of this research. All novel compounds prepared were fully characterised using NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis; the details of which are included.