7 resultados para PARVALBUMIN-POSITIVE NEURONS
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.
Resumo:
Growth differentiation factor-5 (GDF-5) is a member of the transforming growth factor-β superfamily, a family of proteins that play diverse roles in many aspects of cell growth, proliferation and differentiation. GDF-5 has also been shown to be a trophic factor for embryonic midbrain dopaminergic neurons in vitro (Krieglstein et al. 1995) and after transplantation to adult rats in vivo (Sullivan et al. 1998). GDF-5 has also been shown to have neuroprotective and neurorestorative effects on adult dopaminergic neurons in the substantia nigra in animal models of Parkinson’s disease (Sullivan et al. 1997, 1999; Hurley et al. 2004). This experimental evidence has lead to GDF-5 being proposed as a neurotrophic factor with potential for use in the treatment of Parkinson’s disease. However, it is not know if GDF-5 is expressed in the brain and whether it plays a role in dopaminergic neuron development. The experiments presented here aim to address these questions. To that end this thesis is divided into five separate studies each addressing a particular question associated with GDF-5 and its expression patterns and roles during the development of the rat midbrain. Expression of the GDF-5 in the developing rat ventral mesencephalon (VM) was found to begin at E12 and peak on E14, the day that dopaminergic neurons undergo terminal differentiation. In the adult rat, GDF-5 was found to be restricted to heart and brain, being expressed in many areas of the brain, including striatum and midbrain. This indicated a role for GDF-5 in the development and maintenance of dopaminergic neurons. The appropriate receptors for GDF-5 (BMPR-II and BMPR-Ib) were found to be expressed at high levels in the rat VM at E14 and BMPR-II expression was demonstrated on dopaminergic neurons in the E13 mouse VM. GDF-5 resulted in a three-fold increase in the numbers of dopaminergic neurons in cultures of E14 rat VM, without affecting the numbers of neurones or total cells. GDF-5 was found to increase the proportion of neurons that were dopaminergic. The numbers of Nurr1-positive cells were not affected by GDF-5 treatment, but GDF-5 did increase the numbers of Nurr1- positive cells that expressed tyrosine hydroxylase (TH). Taken together this data indicated that GDF-5 increases the conversion of Nurr1-positive, TH-negative cells to Nurr1-positive, TH-positive cells. In GDF-5 treated cultures, total neurite length, neurite arborisation and somal area of dopaminergic were all significantly increased compared to control cultures. Thus this study showed that GDF-5 increased the numbers and morphological differentiation of VM dopaminergic neurones in vitro. In order to examine if GDF-5 could induce a dopaminergic phenotype in neural progenitor cells, neurosphere cultures prepared from embryonic rat VM were established. The effect of the gestational age of the donor VM on the proportion of cell types generated from neurospheres from E12, E13 and E14 VM was examined. Dopaminergic neurons could only be generated from neurospheres which were prepared from E12 VM. Thus in subsequent studies the effect of GDF-5 on dopaminergic induction was examined in progentior cell cultures prepared from the E12 rat VM. In primary cultures of E12 rat VM, GDF-5 increased the numbers of TH-positive cells without affecting the proliferation or survival of these cells. In cultures of expanded neural progenitor cells from the E12 rat VM, GDF-5 increased the expression of Nurr1 and TH, an action that was dependent on signalling through the BMPR-Ib receptor. Taken together, these experiments provide evidence that GDF-5 is expressed in the developing rat VM, is involved in both the induction of a dopaminergic phenotype in cells of the VM and in the subsequent morphological development of these dopaminergic neurons
Resumo:
Hereditary sensory autonomic neuropathy IV (HSAN IV) is an autosomal recessive disorder characterised by inability to feel pain and anhidrosis and is a consequence of defective NGF/TrkA signalling and growth of sensory and sympathetic neurons. Glucocortiocoid-induced tumour necrosis factors receptor (GITR), a transmembrane protein, activated by its specific ligand, GITRL, is well known for its role in the regulation of innate and acquired immune system responses. Recently, GITR was found to be required for NGF-dependant and extracellular signal-related kinase 1/2 (ERK1/2)-induced neurite growth and target innervation in the developing sympathetic nervous system (SNS). Given this novel role of GITR, it is possible that strategies targeting GITR have potential therapeutic benefit in promoting neurite growth in autonomic neuropathies such as HSAN IV. Using P1 mouse SCG neurons as a model, in addition to various SCG cell treatments, knock down models and transfection methods, we investigated whether GITR increases the sensitivity of sympathetic neurons to NGF; the region of GITR required for the enhancement of NGF-promoted growth, the signalling pathways downstream of GITR and how extensively GITR is involved in regulating peripheral innervation of the SNS. Results indicate that the region responsible for the growth promoting effects of GITR lies in its juxtamembrane intracellular region (here termed the growth promoting domain (GPD)) of GITR. The GPD of GITR activates ERK1/2 and inhibits nuclear factor kappa B (NF-κB) in an inverse fashion to provide an optimal cellular growth environment for P1 SCG neurons. While deleting the GPD of GITR had no effect on TrkA expression, constitutive phosphorylation of specific sites in the GPD reduced TrkA expression indicating a possible role for GITR in increasing the sensitivity of SCG neurons to NGF by the regulation of these sites, TrkA expression and subsequent NGF/TrkA binding. GITR appears to be heterogeneously required for NGF-promoted target innervation of SCG neurons in some organs, implying additional factors are involved in extensive NGF-target innervation of the SNS. In conclusion, this study answers basic biological questions regarding the molecular mechanism behind the role of GITR in the development of the SNS, and provides a basis for future research if GITR modulation is to be developed as a strategy for promoting axonal growth.
Resumo:
Childhood asthma, allergic rhinitis and eczema are complex heterogenic chronic inflammatory allergic disorders which constitute a major burden to children, their families. The prevalence of childhood allergic disorders is increasing worldwide and merely rudimentary understanding exists regarding causality, or the influence of the environment on disease expression. Phase Three of the International Study of Asthma and Allergy in Childhood (ISAAC) reported that Irish adolescents had the 4th highest eczema and rhinoconjunctivitis prevalence and 3rd highest asthma prevalence in the world. There are no ISAAC data pertaining to young Irish children. In 2002, Sturley reported a high prevalence of current asthma in Cork primary school children aged 6-9 years. This thesis comprises of three cross-sectional studies which examined the prevalence of and associations with childhood allergy and a quasi-retrospective cohort study which observed the natural history of allergy from 6-9 until 11-13 years. Although not part of ISAAC, data was attained by parentally completed ISAAC-based questionnaires, using the ISAAC protocol. The prevalence, natural history and risk factors of childhood allergy in Ireland, as described in this thesis, echo those in worldwide allergy research. The variations of prevalence in different populations worldwide and the recurring themes of associations between childhood allergy and microbial exposures, from farming environments and/or gastrointestinal infections, as shown in this thesis, strengthen the mounting evidence that microbial exposure on GALT may hold the key to the mechanisms of allergy development. In this regard, probiotics may be an area of particular interest in allergy modification. Although their effects in relation to allergy, have been investigated now for several years, our knowledge of their diversity, complex functions and interactions with gut microflora, remain rudimentary. Birth cohort studies which include genomic and microbiomic research are recommended in order to examine the underlying mechanisms and the natural course of allergic diseases.
Resumo:
Ventral midbrain (VM) dopaminergic (DA) neurons, which project to the dorsal striatum via the nigrostriatal pathway, are progressively degenerated in Parkinson’s disease (PD). The identification of the instructive factors that regulate midbrain DA neuron development, and the subsequent elucidation of the molecular bases of their effects, is vital. Such an understanding would facilitate the generation of transplantable DA neurons from stem cells and the identification of developmentally-relevant neurotrophic factors, the two most promising therapeutic approaches for PD. Two related members of the bone morphogenetic protein (BMP) family, BMP2 and growth/differentiation factor (GDF) 5, which signal via a canonical Smad 1/5/8 signalling pathway, have been shown to have neurotrophic effects on midbrain DA neurons both in vitro and in vivo, and may function to regulate VM DA neuronal development. However, the molecular (signalling pathway(s)) and cellular (direct neuronal or indirect via glial cells) mechanisms of their effects remain to be elucidated. The present thesis hypothesised that canonical Smad signalling mediates the direct effects of BMP2 and GDF5 on the development of VM DA neurons. By activating, modulating and/or inhibiting various components of the BMP-Smad signalling pathway, this research demonstrated that GDF5- and BMP2-induced neurite outgrowth from midbrain DA neurons is dependent on BMP type I receptor activation of the Smad signalling pathway. The role of glial cell-line derived neurotrophic factor (GDNF)-signalling, dynamin-dependent endocytosis and Smad interacting protein-1 (Sip1) regulation, in the neurotrophic effects of BMP2 and GDF5 were determined. Finally, the in vitro development of VM neural stem cells (NSCs) was characterised, and the ability of GDF5 and BMP2 to induce these VM NSCs towards DA neuronal differentiation was investigated. Taken together, these experiments identify GDF5 and BMP2 as novel regulators of midbrain DA neuronal induction and differentiation, and demonstrate that their effects on DA neurons are mediated by canonical BMPR-Smad signalling.
Resumo:
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder, accounting for over 60% of all cases of dementia. The primary risk factor for AD is age, however several genetic and environmental factors are also involved. The pathological characteristics of AD include extracellular deposition of the beta-amyloid peptide (Aβ) and intraneuronal accumulation of neurofibrillary tangles (NFTs) made of aggregated paired helical filaments (PHFs) of the hyperphosphorylated tau protein, along with synaptic loss and neuronal death. There are numerous biochemical mechanisms involved in AD pathogenesis, however the reigning hypothesis points to toxic oligomeric Aβ species as the primary causative factor in a cascade of events leading to neuronal stress and dyshomeostasis that initiate abnormal regulation of tau. The insulin and IGF-1 receptors (IR, IGF-1R) are the primary activators of PI3- K/Akt through which they regulate cell growth, development, glucose metabolism, and learning and memory. Work in our lab and others shows increased Akt activity and phosphorylation of its downstream targets in AD brain, along with insulin and insulin-like growth factor-1 signalling (IIS) dysfunction. This is supported by studies of AD models in vivo and in vitro. Our group and others hypothesise that Aβ activates Akt through IIS to initiate a negative feedback mechanism that desensitises neurons to insulin/IGF-1, and sustains activation of Akt. In this study the functions of endogenous Akt, IR, and the insulin receptor substrate (IRS-1) were examined in relationship to Aβ and tau pathology in the 3xTg-AD mouse model, which contains three mutant human transgenes associated with familial AD or dementia. The 3xTg-AD mouse develops Aβ and tau pathology in a spatiotemporal manner that best recapitulates the progression of AD in human brain. Western blotting and immunofluorescent microscopy techniques were utilised in vivo and in vitro, to examine the relationship between IIS, Akt, and AD pathology. I first characterised in detail AD pathology in 3xTg-AD mice, where an age-related accumulation of intraneuronal Aβ and tau was observed in the hippocampal formation, amygdala, and entorhinal cortex, and at late stages (18 months), extracellular amyloid plaques and NFTs, primarily in the subiculum and the CA1 layer of the hippocampal formation. Increased activity of Akt, detected with antibody to phosphoSer473-Akt, was increased in 3xTg-AD mice compared to age-matched non-transgenic mice (non-Tg), and in direct correlation to the accumulation of Aβ and tau in neuronal somatodendritic compartments. Akt phosphorylates tau at residue Ser214 within a highly specific consensus sequence for Akt phosphorylation, and phosphoSer214-tau strongly decreases microtubule (MT) stabilisation by preventing tau-MT binding. PhosphoSer214-tau increased concomitantly with this in the same age-related and region-specific fashion. Polarisation of tau phosphorylation was observed, where PHF-1 (tauSer396/404) and phosphoSer214-tau both appeared early in 3xTg-AD mice in distinct neuronal compartments: PHF-1 in axons, and phosphoSer214-tau in neuronal soma and dendrites. At 18 months, phosphoSer214-tau strongly colocalised with NFTs positive for the PHF- 1 and AT8 (tauSer202/Thr205) phosphoepitopes. IR was decreased with age in 3xTg-AD brain and in comparison to age-matched non-Tg, and this was specific for brain regions containing Aβ, tau, and hyperactive Akt. IRS-1 was similarly decreased, and both proteins showed altered subcellular distribution. Phosphorylation of IRS-1Ser312 is a strong indicator of IIS dysfunction and insulin resistance, and was increased in 3xTg-AD mice with age and in relation to pathology. Of particular note was our observation that abberant IIS and Akt signalling in 3xTg-AD brain related to Aβ and tau pathology on a gross anatomical level, and specifically localised to the brain regions and circuitry of the perforant path. Finally, I conducted a preliminary study of the effects of synthetic Aβ oligomers on embryonic rat hippocampus neuronal cultures to support these results and those in the literature. Taken together, these novel findings provide evidence for IIS and Akt signal transduction dysfunction as the missing link between Aβ and tau pathogenesis, and contribute to the overall understanding of the biochemical mechanisms of AD.
Resumo:
Prenatal well-being can have significant effects on the mother and developing foetus. Positive psychological interventions, including gratitude and mindfulness, consistently demonstrate benefits for well-being in diverse populations. No research has been conducted on gratitude during pregnancy; the few studies of prenatal mindfulness interventions have demonstrated well-being benefits. The current study examined the effects of gratitude and mindfulness interventions on prenatal maternal well-being, cortisol and birth outcomes. Five studies were conducted. Study 1 was a systematic review of mindfulness intervention effects on cortisol; this highlighted potential benefits of mindfulness but the need for rigorous protocols in future research. In Study 2 a gratitude and a mindfulness intervention were developed and evaluated; findings indicate usefulness of two 3 week interventions. Study 3 examined the effects of these interventions in a randomised controlled trial (RCT) of non-pregnant women, before examining a pregnant group. No significant intervention effects were found in this study, potentially due to insufficient power and poor protocol adherence. Changes in expected directions were observed for most outcomes and the potential utility of a combined gratitude and mindfulness intervention was noted. In Study 4 a gratitude during pregnancy (GDP) scale was developed and the reliability of an existing mindfulness measure (MAAS) was examined in a pregnant group. Both scales were found to be suitable and reliable measures in pregnancy. Study 5 incorporated the findings of the previous four studies to examine of the effect of a combined mindfulness and gratitude intervention with a group of pregnant women. Forty-six participants took part in a 5-week RCT that examined intervention effects on prenatal gratitude, mindfulness, happiness, satisfaction with life, social support, prenatal stress, depression and sleep. Findings indicated that the intervention improved sleep quality and that effects for prenatal distress were approaching significance. Issues of attrition and non-compliance to study protocols were problematic and are discussed. In summary, the current thesis highlights the need for robust measurement, and intervention and cortisol sampling protocols in future research, particularly with pregnant groups. Findings also demonstrate tentative benefits of a gratitude and mindfulness intervention during pregnancy.