4 resultados para Orthogonal polynomials in several variables
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.
Resumo:
PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.
Resumo:
Lactococcus lactis is used extensively world-wide for the production of fermented dairy products. Bacteriophages (phages) infecting L. lactis can result in slow or incomplete fermentations, or may even cause total fermentation failure. Therefore, bacteriophages disrupting L. lactis fermentation are of economic concern. This thesis employed a multifaceted approach to investigate various molecular aspects of phage-host interaction in L. lactis. The genome sequence of an Irish dairy starter strain, the prophage-cured L. lactis subsp. cremoris UC509.9, was studied. The 2,250,427 bp circular chromosome represents the smallest among its sequenced lactococcal equivalents. The genome displays clear genetic adaptation to the dairy niche in the form of extensive reductive evolution. Gene prediction identified 2066 protein-encoding genes, including 104 which showed significant homology to transposase-specifying genes. Over 9 % of the identified genes appear to be inactivated through stop codons or frame shift mutations. Many pseudogenes were found in genes that are assigned to carbohydrate and amino acid transport and metabolism orthologous groups, reflecting L. lactis UC509.9’s adaptation to the lactose and casein-rich dairy environment. Sequence analysis of the eight plasmids of L. lactis revealed extensive adaptation to the dairy environment. Key industrial phenotypes were mapped and novel lactococcal plasmid-associated genes highlighted. In addition to chromosomally-encoded bacteriophage resistance systems, six functional such systems were identified, including two abortive infection systems, AbiB and AbiD1, explaining the observed phage resistance of L. lactis UC509.9 Molecular analysis suggests that the constitutive expression of AbiB is not lethal to cells, suggesting the protein is expressed in an un/inactivated form. Analysis of 936 species phage sk1-escape mutants of AbiB revealed that all such mutants harbour mutations in orf6, which encodes the major capsid protein. Results suggest that the major capsid protein is required for activation of the AbiB system, although this requires furrther investigations. Temporal transcriptomes of L. lactis UC509.9 undergoing lytic infection with either one of two distinct bacteriophages, Tuc2009 and c2, was determined and compared to the transcriptome of uninfected UC509.9 cells. Whole genome microarrays performed at various time-points post-infection demonstrated a rather modest impact on host transcription. Alterations in the UC509.9 transcriptome during lytic infection appear phage-specific, with a relatively small number of differentially transcribed genes shared between infection with either Tuc2009 or c2. Transcriptional profiles of both bacteriophages during lytic infection was shown to generally correlate with previous studies and allowed the confirmation of previously predicted promoter sequences. Bioinformatic analysis of genomic regions encoding the presumed cell wall polysaccharide (CW PS) biosynthesis gene cluster of several strains of L. lactis was performed. Results demonstrate the presence of three dominant genetic types of this gene cluster, termed type A, B and C. These regions were used for the development of a multiplex PCR to identify CW PS genotype of various lactococcal strains. Analysis of 936 species phage receptor binding protein phylogeny (RBP) and CW PS genotype revealed an apparent correlation between RBP phylogeny and CW PS type, thereby providing a partial explanation for the observed narrow host range of 936 phages. Further analysis of the genetic locus encompassing the presumed CW PS biosynthesis operon of eight strains identified as belonging to the CW PS C (geno)type, revealed the presence of a variable region among the examined strains. The obtained comparative analysis allowed for the identification of five subgroups of the C type, named C1 to C5. We purified an acidic polysaccharide from the cell wall of L. lactis 3107 (C2 subtype) and confirmed that it is structurally different from the CW PS of the C1 subtype L. lactis MG1363. Combinations of genes from the variable region of C2 subtype were amplified from L. lactis 3107 and introduced into a mutant of the C1 subtype L. lactis NZ9000 (a direct derivative of MG1363) deficient in CW PS biosynthesis. The resulting recombinant mutant synthesized a CW PS with a composition characteristic for that of the C2 subtype L. lactis 3107 and not the wildtype C1 L. lactis NZ9000. The recombinant mutant exhibited a changed phage resistance/sensitivity profile consistent with that of L. lactis 3107, which unambiguously demonstrated that L. lactis 3107 CW PS is the host cell surface receptor of two bacteriophages belonging to the P335 species as well as phages that are member of the 936 species. The research presented in this thesis has significantly advanced our understanding of L. lactis bacteriophage-host interactions in several ways. Firstly, the examination of plasmidencoded bacteriophage resistance systems has allowed inferences to be made regarding the mode of action of AbiB, thereby providing a platform for further elucidation of the molecular trigger of this system. Secondly, the phage infection transcriptome data presented, in addition to previous work, has made L. lactis a model organism in terms of transcriptomic studies of bacteriophage-host interactions. And finally, the research described in this thesis has for the first time explicitly revealed the nature of a carbohydrate bacteriophage receptor in L. lactis, while also providing a logical explanation for the observed narrow host ranges exhibited by 936 and P335 phages. Future research in discerning the structures of other L. lactis CW PS, combined with the determination of the molecular interplay between receptor binding proteins of these phages and CW PS will allow an in depth understanding of the mechanism by which the most prevalent lactococcal phages identify and adsorb to their specific host.
Resumo:
The principal objective of this thesis was to investigate the ability of reversible optical O2 sensors to be incorporated into food/beverage packaging systems to continuously monitor O2 levels in a non-destructive manner immediately postpackaging and over time. Residual levels of O2 present in packs can negatively affect product quality and subsequently, product shelf-life, especially for O2-sensitive foods/beverages. Therefore, the ability of O2 sensors to continuously monitor O2 levels present within food/beverage packages was considered commercially relevant in terms of identifying the consequences of residual O2 on product safety and quality over time. Research commenced with the development of a novel range of O2 sensors based on phosphorescent platinum and palladium octaethylporphyrin-ketones (OEPk) in nano-porous high density polyethylene (HDPE), polypropylene (PP) polytetrafluoroethylene (PTFE) polymer supports. Sensors were calibrated over a temperature range of -10°C to +40°C and deemed suitable for food and beverage packaging applications. This sensor technology was used and demonstrated itself effective in determining failures in packaging containment. This was clearly demonstrated in the packaging of cheese string products. The sensor technology was also assessed across a wide range of packaged products; beer, ready-to-eat salad products, bread and convenience-style, muscle-based processed food products. The O2 sensor technology performed extremely well within all packaging systems. The sensor technology adequately detected O2 levels in; beer bottles prior to and following pasteurisation, modified atmosphere (MA) packs of ready-to-eat salad packs as respiration progressed during product storage and MA packs of bread and convenience-style muscle-based products as mycological growth occurred in food packs over time in the presence and absence of ethanol emitters. The use of the technology, in conjunction with standard food quality assessment techniques, showed remarkable usefulness in determining the impact of actual levels of O2 on specific quality attributes. The O2 sensing probe was modified, miniaturised and automated to screen for the determination of total aerobic viable counts (TVC) in several fish species samples. The test showed good correlation with conventional TVC test (ISO:4833:2003), analytical performance and ruggedness with respect to variation of key assay parameters (probe concentration and pipetting volume). Overall, the respirometric fish TVC test was simple to use, possessed a dynamic microbial range (104-107 cfu/g sample), had an accuracy of +/- one log(cfu/g sample) and was rapid. Its ability to assess highly perishable products such as fish for total microbial growth in <12 hr demonstrates commercial potential.