4 resultados para Ordered eigenvalues
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Both low-dimensional bar-coded metal oxide layers, which exhibit molecular hinging, and free-standing organic nanostructures can be obtained from unique nanofibers of vanadium oxide (VOx). The nanofibers are successfully synthesized by a simple chemical route using an ethanolic solution of vanadium pentoxide xerogel and dodecanethiol resulting in a double bilayered laminar turbostratic structure. The formation of vanadium oxide nanofibers is observed after hydrothermal treatment of the thiol-intercalated xerogel, resulting in typical lengths in the range 2–6 µm and widths of about 50–500 nm. We observe concomitant hinging of the flexible nanofiber lamina at periodic hinge points in the final product on both the nanoscale and molecular level. Bar-coded nanofibers comprise alternating segments of organic–inorganic (thiols–VOx) material and are amenable to segmented, localized metal nanoparticle docking. Under certain conditions free-standing bilayered organic nanostructures are realized.
Resumo:
Pores are formed electrochemically in n-InP in KCl electrolytes with concentrations of 2 mol dm-3 or greater. The pore morphology is similar to what is seen in other halide-based electrolytes. At low potentials, crystallographically oriented (CO) pores are formed. At higher potentials, current-line oriented (CLO) pores are formed. Crystallographically oriented pore walls are observed for both pore morphologies. When formed at a constant current, potential oscillations are observed which have been correlated to oscillations in the pore width. The CLO pore wall smoothness and overall uniformity increase as KCl concentration is increased. The porous structures formed in KCl compare favourably with those formed in the more acidic or alkaline electrolytes that are typically used to form these structures.
Resumo:
In this paper, the research focus is how to entangle magnetic dipoles to control/engineer magnetic properties of different devices at a submicron/nano scale. Here, we report the generation of synthetic arrays of tunable magnetic dipoles in a nanomodulated continuous ferromagnetic film. In-plane magnetic field rotations in modulated Ni 45Fe 55 revealed various rotational symmetries of magnetic anisotropy due to dipolar interaction with a crossover from lower to higher fold as a function of modulation geometry. Additionally, the effect of aspect ratio on symmetry shows a novel phase shift of anisotropy, which could be critical to manipulate the overall magnetic properties of the patterned film. The tendency to form vortex is in fact found to be very small, which highlights that the strong coupling between metastable dipoles is more favorable than vortex formation to minimize energy in this nanomodulated structure. This has further been corroborated by the observation of step hysteresis, magnetic force microscopy images of tunable magnetic dipoles, and quantitative micromagnetic simulations. An analytical expression has been derived to estimate the overall anisotropy accurately for nanomodulated film having low magnetocrystaline anisotropy. Derived mathematical expressions based on magnetic dipolar interaction are found to be in good agreement with our results.
Resumo:
The microphase separation of block copolymer (BCP) thin films can afford a simple and cost-effective means to studying nanopattern surfaces, and especially the fabrication of nanocircuitry. However, because of complex interface effects and other complications, their 3D morphology, which is often critical for application, can be more complex than first thought. Here, we describe how emerging microscopic methods may be used to study complex BCP patterns and reveal their rich detail. These methods include helium ion microscopy (HIM) and high resolution x-section transmission electron microscopy (XTEM), and complement conventional secondary electron and atomic force microscopies (SEM and TEM). These techniques reveal that these structures are quite different to what might be expected. We illustrate the advances in the understanding of BCP thin film morphology in several systems, which result from this characterization. The systems described include symmetric, lamellar forming polystyrene-b-polymethylmethacrylate (PS-b-PMMA), cylinder forming polystyrene-b-polydimethylsiloxane (PS-b-PDMS), as well as lamellar and cylinder forming patterns of polystyrene-b-polyethylene oxide (PS-b-PEO) and polystyrene-b-poly-4-vinylpyridine (PS-b-P4VP). Each of these systems exhibits more complex arrangements than might be first thought. Finding and developing techniques whereby complex morphologies, particularly at very small dimensions, can be determined is critical to the practical use of these materials in many applications. The importance of quantifying these complex morphologies has implications for their use in integrated circuit manufacture, where they are being explored as alternative pattern forming methods to conventional UV lithography.