4 resultados para Order disorder effect
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Imprisonment is the most severe penalty utilised by the criminal courts in Ireland. In recent decades the prison population has grown significantly despite expressions both official and public to reduce the use of the sanction. Two other sanctions are available to the Irish sentencer which may be used as a direct and comparable sentence in lieu of a term of imprisonment namely, the community service order and the suspended sentence. The community service order remains under-utilised as an alternative to the custodial sentence. The suspended sentence is used quite liberally but its function may be more closely related to the aim of deterrence rather than avoiding the use of the custodial sentence. Thus the aim of decarceration may not be optimal in practice when either sanction is utilised. The decarcerative effect of either sanction is largely dependent upon the specific purpose which judges invest in the sanction. Judges may also be inhibited in the use of either sanction if they lack confidence that the sentence will be appropriately monitored and executed. The purpose of this thesis is to examine the role of the community service order and the suspended sentence in Irish sentencing practice. Although community service and the suspended sentence present primarily as alternatives to the custodial sentence, the manner in which the judges utilise or fail to utilise the sanctions may differ significantly from this primary manifestation. Therefore the study proceeds to examine the judges' cognitions and expectations of both sanctions to explore their underlying purposes and to reveal the manner in which the judges use the sanctions in practice. To access this previously undisclosed information a number of methodologies were deployed. An extensive literature review was conducted to delineate the purpose and functionality of both sanctions. Quantitative data was gathered by way of sampling for the suspended sentence and the part-suspended sentence where deficiencies were apparent to show the actual frequency in use of that sanction. Qualitative methodologies were used by way of focus groups and semi-structured interviews of judges at all jurisdictional levels to elucidate the purposes of both sanctions. These methods allowed a deeper investigation of the factors which may promote or inhibit such usage. The relative under-utilisation of the community service order as an alternative to the custodial sentence may in part be explained by a reluctance by some judges to equate it with a real custodial sentence. For most judges who use the sanction, particularly at summary level, community service serves a decarcerative function. The suspended sentence continues to be used extensively. It operates partly as a decarcerative penalty but the purpose of deterrence may in practice overtake its theoretical purpose namely the avoidance of custody. Despite ongoing criticism of executive agencies such as the Probation Service and the Prosecution in the supervision of such penalties both sanctions continue to be used. Engagement between the Criminal Justice actors may facilitate better outcomes in the use of either sanction. The purposes for which both sanctions are deployed find their meaning essentially in the practices of the judges themselves as opposed to any statutory or theoretical claims upon their use or purpose.
Resumo:
Chronic Kidney Disease (CKD), osteoporosis and mild hyponatremia are all prevalent chronic conditions that may coexist and are often under-recognized. Mineral-Bone Disorder begins early in the natural history of CKD and results in complex abnormalities of bone which ultimately confers a well-established increased risk of fragility fractures in End Stage Kidney Disease. Hyponatremia is a novel, usually renal mediated metabolic perturbation, that most commonly occurs independently of the stage of renal dysfunction but which may also predispose to increased fracture risk. The extent -if any- to which either early stages of renal dysfunction or the presence of hyponatremia contribute to fracture occurrence in the general population, independently of osteoporosis, is unclear. Renal transplantation is the treatment of choice for ESKD and although it restores endogenous renal function it typically fails to normalize either the long term cardiovascular or fracture risk. One potential mechanism contributing to these elevated long-term risks and to diminished Health Related Quality of Life is persistent, post-transplant hyperparathyroidism. In this study we retrospectively examine the association of renal function and serum sodium with Bone Mineral Density and fracture occurrence in a retrospective cohort of 1930 female members of the general population who underwent routine DXA scan. We then prospectively recruited a cohort of 90 renal transplant recipients in order to examine the association of post transplant parathyroid hormone (PTH) level with measures of CKD Mineral Bone Disorder, including, DXA Bone Mineral Density, Vascular Calcification (assessed using both abdominal radiography and CT techniques, as well as indirectly by carotid-femoral Pulse Wave Velocity) and Quality of Life (using the Short Form-12 and a PTH specific symptom score). In the retrospective DXA cohort, moderate CKD (eGFR 30-59ml/min/1.73m2) and hyponatremia (<135mmol/L) were associated with fracture occurrence, independently of BMD, with an adjusted Odds Ratio (95% Confidence Interval), of 1.37 (1.0, 1.89) and 2.25 (1.24, 4.09) respectively. In the renal transplant study, PTH was independently associated with the presence of osteoporosis, adjusted Odds Ratio (95% Confidence Interval), 1.15 (per 10ng/ml increment), (1.04, 1.26). The presence of osteoporosis but not PTH was independently associated with measures of vascular calcification, adjusted ß (95% Confidence Interval), 12.45, (1.16, 23.75). Of the eight quality-of-life domains examined, post-transplant PTH (per 10ng/ml increment), was only significantly and independently associated with reduced Physical Functioning, (95% Confidence Interval), 1.12 (1.01, 1.23). CKD and hyponatremia are both common health problems that may contribute to fracture occurrence in the general population, a major on-going public health concern. PTH and decreased Bone Mineral Density may signal sub-optimal long-term outcomes post renal transplantation, influencing bone and vascular health and to a limited extent long term Health Related Quality of Life
Resumo:
A bacteriocin-producing strain of Lactobacillus paracasei DPC 4715 was used as an adjunct culture in Cheddar cheese in order to control the growth of “wild” nonstarter lactic acid bacteria. No suppression of growth of the indicator strain was observed in the experimental cheese. The bacteriocin produced by Lactobacillus paracasei DPC 4715 was sensitive to chymosin and cathepsin D and it may have been cleaved by the rennet used for the cheese manufactured or by indigenous milk proteases. A series of studies were performed using various microbial adjuncts to influence cheese ripening. Microbacterium casei DPC 5281, Corynebacterium casei DPC 5293 and Corynebacterium variabile DPC 5305 were added to the cheesemilk at level of 109 cfu/ml resulting in a final concentration of 108 cfu/g in Cheddar cheese. The strains significantly increased the level of pH 4.6-soluble nitrogen, total free amino acids after 60 and 180 d of ripening and some individual free amino acids after 180 d. Yarrowia lipolytica DPC 6266, Yarrowia lipolytica DPC 6268 and Candida intermedia DPC 6271 were used to accelerate the ripening of Cheddar cheese. Strains were grown in YG broth to a final concentration of 107 cfu/ml, microfluidized, freeze-dried and added to the curd during salting at level of 2% w/w. The yeasts positively affected the primary, secondary proteolysis and lipolysis of cheeses and had aminopeptidase, dipeptidase, esterase and 5’ phosphodiestere activities that contributed to accelerate the ripening and improve the flavor of cheese. Hafia alvei was added to Cheddar cheesemilk at levels of 107 cfu/ml and 108 cfu/ml and its contribution during ripening was evaluated. The strain significantly increased the level of pH 4.6-soluble nitrogen, total free amino-acids, and some individual free amino-acids of Cheddar cheese, whereas no differences in the urea-polyacrylamide gel electrophoresis (urea-PAGE) electrophoretograms of the cheeses were detected. Hafia alvei also significantly increased the level of some biogenic amines. A low-fat Cheddar cheese was made with Bifidobacterium animalis subsp. lactis, strain BB-12® at level of 108 cfu/ml, as a probiotic adjunct culture and Hi-Maize® 260 (resistant high amylose maize starch) at level of 2% and 4% w/v, as a prebiotic fiber which also played the role of fat replacer. Bifidobacterium BB-12 decreased by 1 log cycle after 60 d of ripening and remained steady at level of ~107 cfu/g during ripening. The Young’s modulus also increased proportionally with increasing levels of Hi-maize. Hencky strain at fracture decreased over ripening and increased with increasing in fat replacer. A cheese based medium (CBM) was developed with the purpose of mimicking the cheese environment at an early ripening stage. The strains grown in CBM showed aminopeptidase activity against Gly-, Arg-, Pro- and Phe-p-nitroanalide, whereas, when grown in MRS they were active against all the substrates tested. Both Lb. danicus strains grown in MRS and in CBM had aminotransferase activity towards aromatic amino acids (Phe and Trp) and also branched-chain amino acids (Leu and Val). Esterase activity was expressed against p-nitrophenyl-acetate (C2), pnitrophenyl- butyrate (C4) and p-nitrophenyl-palmitate (C16) and was significantly higher in CBM than in MRS.
Resumo:
Using quantum chemical calculations, we investigate surface reactions of copper precursors and diethylzinc as the reducing agent for effective Atomic Layer Deposition (ALD) of Cu. The adsorption of various commonly used Cu(II) precursors is explored. The precursors vary in the electronegativity and conjugation of the ligands and flexibility of the whole molecule. Our study shows that the overall stereochemistry of the precursor governs the adsorption onto its surface. Formation of different Cu(II)/Cu(I)/Cu(0) intermediate complexes from the respective Cu(II) compounds on the surface is also explored. The surface model is a (111) facet of a Cu55 cluster. Cu(I) compounds are found to cover the surface after the precursor pulse, irrespective of the precursor chosen. We provide new information about the surface chemistry of Cu(II) versus Cu(I) compounds. A pair of CuEt intermediates or the dimer Cu2Et2 reacts in order to deposit a new Cu atom and release gaseous butane. In this reaction, two electrons from the Et anions are donated to copper for reduction to metallic form. This indicates that a ligand exchange between the Cu and Zn is important for the success of this transmetalation reaction. The effect of the ligands in the precursor on the electron density before and after adsorption onto the surface has also been computed through population analysis. In the Cu(I) intermediate, charge is delocalized between the Cu precursor and the bare copper surface, indicating metallic bonding as the precursor densifies to the surface.