5 resultados para One-carbon metabolism

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetics and biochemistry involved in the biodegradation of styrene and the production of polyhydroxyalkanoates in Pseudomonas putida CA-3 have been well characterised to date. Knowledge of the role played by global regulators in controlling these pathways currently represents a critical knowledge gap in this area. Here we report on our efforts to identify such regulators using mini-Tn5 transposon mutagenesis of the P. putida CA-3 genome. The library generated was subjected to phenotypic screening to identify mutants exhibiting a reduced sensitivity to the effects of carbon catabolite repression of aromatic pathway activity. Our efforts identified a clpX disrupted mutant which exhibited wild-type levels of growth on styrene but significantly reduced growth on phenylacetic acid. RT-PCR analysis of key PACoA catabolon genes necessary for phenylacetic acid metabolism, and SDS-PAGE protein profile analyses suggest that no direct alteration of PACoA pathway transcriptional or translational activity was involved. The influence of global regulators affecting the accumulation of PHAs in P. putida CA-3 was also studied. Phenotypic screening of the mini-Tn5 library revealed a gacS sensor kinase gene disruption resulting in the loss of PHA accumulation capacity in P. putida CA-3. Subsequent SDS-PAGE protein analyses of the wild type and gacS mutant strains identified post-transcriptional control of phaC1 synthase as a key point of control of PHA synthesis in P. putida CA-3. Disruption of the gacS gene in another PHA accumulating organism, P. putida S12, also demonstrated a reduction of PHA accumulation capacity. PHA accumulation was observed to be disrupted in the CA-3 gacS mutant under phosphorus limited growth conditions. Over-expression studies in both wild type CA-3 and gacS mutant demonstrated that rsmY over-expression in gacS disrupted P. putida CA-3 is insufficient to restore PHA accumulation in the cell however in wild type cells, over-expression of rsmY results in an altered PHA monomer compositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gastrointestinal tract (GIT) is a diverse ecosystem, and is colonised by a diverse array of bacteria, of which bifidobacteria are a significant component. Bifidobacteria are Gram-positive, saccharolytic, non-motile, non-sporulating, anaerobic, Y-shaped bacteria, which possess a high GC genome content. Certain bifidobacteria possess the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA) by a biochemical pathway that is hypothesised to be achieved via a linoleic isomerase. In Chapter two of this thesis it was found that the MCRA-specifying gene is not involved in CLA production in B. breve NCFB 2258, and that this gene specifies an oleate hydratase involved in the conversion of oleic acid into 10-hydroxystearic acid. Prebiotics are defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating growth and/or activity of one or a limited number of bacteria in the colon. Key to the development of such novel prebiotics is to understand which carbohydrates support growth of bifidobacteria and how such carbohydrates are metabolised. In Chapter 3 of this thesis we describe the identification and characterisation of two neighbouring gene clusters involved in the metabolism of raffinose-containing carbohydrates (plus related carbohydrate melibiose) and melezitose by Bifidobacterium breve UCC2003. The fourth chapter of this thesis describes the analysis of transcriptional regulation of the raf and mel clusters. In the final experimental chapter two putative rep genes, designated repA7017 and repB7017, are identified on the megaplasmid pBb7017 of B. breve JCM 7017, the first bifidobacterial megaplasmid to be reported. One of these, repA7017, was subjected to an in-depth characterisation. The work described in this thesis has resulted in an improved understanding of bifidobacterial fatty acid and carbohydrate metabolism, Furthermore, attempts were made to develop novel genetic tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bifidobacteria are Gram positive, anaerobic, typically Y-shaped bacteria which are naturally found in the digestive tract of certain mammals, birds and insects. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breast-fed infants. The prototypical B. breve strain UCC2003 has previously been shown to utilise numerous carbohydrates of plant origin. Various aspects of host-derived carbohydrate metabolism occurring in this bacterium will be described in this thesis. Chapter II describes B. breve UCC2003 utilisation of sialic acid, a nine-carbon monosaccharide, which is found in human milk oligosaccharides (HMOs) and the mucin glycoprotein. B. breve UCC2003 was also shown to cross-feed on sialic acid released from 3’ sialyllactose, a prominent HMO, by the extracellular sialidase activity of Bifidobacterium bifidum PRL2010. Chapter III reports on the transcriptional regulation of sialic acid metabolism in B. breve UCC2003 by a transcriptional repressor encoded by the nanR gene. NanR belongs to the GntR-family of transcriptional regulators and represents the first bifidobacterial member of this family to be characterised. Chapter IV investigates B. breve UCC2003 utilisation of mucin. B. breve UCC2003 was shown to be incapable of degrading mucin; however when grown in co-culture with B. bifidum PRL2010 it exhibits enhanced growth and survival properties. A number of methods were used to investigate and identify the mucin components supporting this enhanced growth/viability phenotype. Chapter V describes the characterisation of two sulfatase-encoding gene clusters from B. breve UCC2003. The transcriptional regulation of both sulfatase-encoding gene clusters was also investigated. The work presented in this thesis represents new information on the metabolism of host-derived carbohydrates in bifidobacteria, thus increasing our understanding of how these gut commensals are able to colonise and persist in the gastrointestinal tract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comprehensive analysis of the electrical properties, structure and composition of Pt interconnects, developed via mask-less, electron beam induced deposition of the carbon-free Pt precursor, Pt(PF3)4, is presented. The results demonstrate significantly improved electrical performance in comparison with that generated from the standard organometallic precursor, (CH3)3Pt(CpCH3). In particular, the Pt interconnects exhibited perfect ohmic behavior and resistivity that can be diminished to 0.24 × 10−3 Ω cm, which is only one order of magnitude higher than bulk Pt, in comparison to 0.2 Ω cm for the standard carbon-containing interconnects. A maximum current density of 1.87 × 107 A cm−2 was achieved for the carbon-free Pt, compared to 9.44 × 105 A cm−2 for the standard Pt precursor. The enhanced electrical properties of the as-deposited materials can be explained by the absence of large amounts of carbon impurities, and their further improvement by postdeposition annealing in N2. In-situ TEM heating experiments confirmed that the annealing step induces sintering of the Pt nanocrystals and improved crystallinity, which contributes to the enhanced electrical performance. Alternative annealing under reducing conditions resulted in improved performance of the standard Pt interconnects, while the carbon-free deposit suffered electrical and structural breakage due to formation of larger Pt islands

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon carbide (SiC) is a promising material for electronics due to its hardness, and ability to carry high currents and high operating temperature. SiC films are currently deposited using chemical vapor deposition (CVD) at high temperatures 1500–1600 °C. However, there is a need to deposit SiC-based films on the surface of high aspect ratio features at low temperatures. One of the most precise thin film deposition techniques on high-aspect-ratio surfaces that operates at low temperatures is atomic layer deposition (ALD). However, there are currently no known methods for ALD of SiC. Herein, the authors present a first-principles thermodynamic analysis so as to screen different precursor combinations for SiC thin films. The authors do this by calculating the Gibbs energy ΔGΔG of the reaction using density functional theory and including the effects of pressure and temperature. This theoretical model was validated for existing chemical reactions in CVD of SiC at 1000 °C. The precursors disilane (Si2H6), silane (SiH4), or monochlorosilane (SiH3Cl) with ethyne (C2H2), carbontetrachloride (CCl4), or trichloromethane (CHCl3) were predicted to be the most promising for ALD of SiC at 400 °C.