20 resultados para Oligomeric lactic acid

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal spoilage is the most common type of microbial spoilage in food leading to significant economical and health problems throughout the world. Fermentation by lactic acid bacteria (LAB) is one of the oldest and most economical methods of producing and preserving food. Thus, LAB can be seen as an interesting tool in the development of novel bio-preservatives for food industry. The overall objective of this study was to demonstrate, that LAB can be used as a natural way to improve the shelf-life and safety of a wide range of food products. In the first part of the thesis, 116 LAB isolates were screened for their antifungal activity against four Aspergillus and Penicillium spp. commonly found in food. Approximately 83% of them showed antifungal activity, but only 1% showed a broad range antifungal activity against all tested fungi. The second approach was to apply LAB antifungal strains in production of food products with extended shelf-life. L. reuteri R29 strain was identified as having strong antifungal activity in vitro, as well as in sourdough bread against Aspergillus niger, Fusarium culmorum and Penicillium expansum. The ability of the strain to produce bread of good quality was also determined using standard baking tests. Another strain, L. amylovorus DSM19280, was also identified as having strong antifungal activity in vitro and in vivo. The strain was used as an adjunct culture in a Cheddar cheese model system and demonstrated the inhibition of P. expansum. Significantly, its presence had no detectable negative impact on cheese quality as determined by analysis of moisture, salt, pH, and primary and secondary proteolysis. L. brevis PS1 a further strain identified during the screening as very antifungal, showed activity in vitro against common Fusarium spp. and was used in the production of a novel functional wortbased alcohol-free beverage. Challenge tests performed with F. culmorum confirmed the effectiveness of the antifungal strain in vivo. The shelf-life of the beverage was extended significantly when compared to not inoculated wort sample. A range of antifungal compounds were identified for the 4 LAB strains, namely L. reuteri ee1p, L. reuteri R29, L. brevis PS1 and L. amylovorous DSM20531. The identification of the compounds was based on liquid chromatography interfaced to the mass spectrometer and PDA detector

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal spoilage of food and feed prevails as a major problem for the food industry. The use antifungal-producing lactic acid bacteria (LAB) may represent a safer, natural alternative to the use of chemical preservatives in foods. A large scale screen was undertaken to identify a variety of LAB with antifungal properties from plant, animal and human sources. A total of 6,720 LAB colonies were isolated and screened for antifungal activity against the indicator Penicillium expansum. 94 broad-spectrum producers were identified through 16S rRNA sequencing with the majority of the population comprising Lactobacillus plantarum isolates. Six broad-spectrum isolates were consequently characterised. Pedicococcus pentosaceous 54 displayed potent anti-mould capabilities in pear, plum and grape models and may represent an ideal candidate for use in the beverage industry. Two antifungal Lb. plantarum isolates were assessed for their technological robustness and potential as biopreservatives in refrigerated foods. Lb. plantarum 16 and 62 displayed high levels of tolerance to freeze-drying, low temperature exposure and high salt concentrations. Both lactobacilli were introduced as supplements into orange juice to retard the growth of the spoilage yeast Rhodotorula mucilaginosa. Furthermore the isolates were applied as adjuncts in yoghurt production to successfully reduce yeast growth. Lb. plantarum 16 proved to be the optimal inhibitor of yeast growth in both food matrices. To date there is limited information available describing the mechanisms behind fungal inhibition by LAB. The effects of concentrated cell-free supernatant (cCFS), derived from Lb. plantarum 16, on the growth of two food-associated moulds was assessed microscopically. cCFS completely inhibited spore, germ tube and hyphal development. A transcriptomic approach was undertaken to determine the impact of antifungal activity on Aspergillus fumigatus Af293. A variety of genes, most notably those involved in cellular metabolism, were found to have their transcription modulated in response to cCFS which is indicative of global cellular shutdown. This study provides the first insights into the molecular targets of antifungal compounds produced by LAB. The genome sequence of the steep water isolate Lb. plantarum 16 was determined. The complete genome of Lb. plantarum16 consists of a single circular chromosome of 3,044,738 base pairs with an average G+C content of 44.74 % in addition to eight plasmids. The genome represents the smallest of this species to date while harbouring the largest plasmid complement. Some features of particular interest include the presence of two prophages, an interrupted plantaricin cluster and a chromosomal and plasmid encoded polysaccharide cluster. The sequence presented here provides a suitable platform for future studies elucidating the mechanisms governing antifungal production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 μg.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher β-glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 °P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of the “free-from” trend, biopreservation for bread products has increasingly become important to prevent spoilage since artificial preservatives are more and more rejected by consumers. A literature review conducted as part of this thesis revealed that the evaluation of more suitable antifungal strains of lactic acid bacteria (LAB) is important. Moreover, increasing the knowledge about the origin of the antifungal effect is fundamental for further enhancement of biopreservation. This thesis addresses the investigation of Lactobacillus amylovorus DSM19280, Lb. brevis R2: and Lb. reuteri R29 for biopreservation using in vitro trials and in situ sourdough fermentations of quinoa, rice and wheat flours as biopreservatives in breads. Their contribution to quality and shelf life extension on bread was compared and related to their metabolic activity and substrate features. Moreover, the quantity of antifungal carboxylic acids produced during sourdough fermentation was analysed. Overall a specific profile of antifungal compounds was found in the sourdough samples which were strain and substrate dependently different. The best preservative effect in quinoa sourdough and wheat sourdough bread was achieved when Lb. amylovorus DSM19280 fermented sourdough was used. However, the concentration of the antifungal compounds found in these biopreservatives were much lower when compared with Lb. reuteri R29 as the highest producer. Nevertheless, the artificial application of the highest concentration of these antifungal compounds in chemically acidified wheat sourdough bread succeeded in a longer shelf life than achieved only by acidifying the dough. This evidences their partial contribution to the antifungal activity and their synergy. Additionally, a HRGC/MS method for the identification and quantification of the antifungal active compounds cyclo(Leu-Pro), cyclo(Pro-Pro), cyclo(Met-Pro) and cyclo(Phe-Pro) was successfully developed by using stable isotope dilutions assays with the deuterated counterparts. It was observed that the concentrations of cyclo(Leu-Pro), cyclo(Pro-Pro), and cyclo(Phe-Pro) increased only moderately in MRS-broth and wort fermentation by the activity of the selected microorganism, whereas the concentration of cyclo(Met-Pro) stayed unchanged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactic acid bacteria expolysaccharides (LAB-EPS), in particular those formed from sucrose have the potential to improve food and beverage rheology and enhance their sensory properties potentially replacing or reducing expensive hydrocolloids currently used as improvers in food and beverage industries. Addition of sucrose not only enables EPS formation but also affects organic acid formation, thus influencing the sensory properties of the resulting food/beverage products. The first part of the study the organoleptic modulation of barley malt derived wort fermented using in situ produced bacterial polysaccharides has been investigated. Weisella cibaria MG1 was capable to produce exopolysaccharides during sucrosesupplemented barley malt derived wort fermentation. Even though the strain dominated the (sucrose-supplemented) wort fermentation, it was found to produce EPS (14.4 g l-1) with lower efficiency than in SucMRS (34.6 g l-1). Higher maltose concentration in wort led to the increased formation of oligosaccharide (OS) at the expense of EPS. Additionally, small amounts of organic acids were formed and ethanol remained below 0.5% (v/v). W. cibaria MG1 fermented worts supplemented with 5 or 10% sucrose displayed a shear-thinning behaviour indicating the formation of polymers. This report showed how novel and nutritious LAB fermented wort-base beverage with prospects for further advancements can be formulated using tailored microbial cultures. In the next step, the impact of exopolysaccharide-producing Weissella cibaria MG1 on the ability to improve rheological properties of fermented plant-based milk substitute plant based soy and quinoa grain was evaluated. W. cibaria MG1 grew well in soy milk, exceeding a cell count of log 8 cfu/g within 6 h of fermentation. The presence of W. cibaria MG1 led to a decrease in gelation and fermentation time. EPS isolated from soy yoghurts supplemented with sucrose were higher in molecular weight (1.1 x 108 g/mol vs 6.6 x 107 g/mol), and resulted in reduced gel stiffness (190 ± 2.89 Pa vs 244 ± 15.9 Pa). Soy yoghurts showed typical biopolymer gels structure and the network structure changed to larger pores and less cross-linking in the presence of sucrose and increasing molecular weight of the EPS. In situ investigation of Weissella cibaria MG1 producing EPS on quinoa-based milk was performed. The production of quinoa milk, starting from wholemeal quinoa flour, was optimised to maximise EPS production. On doing that, enzymatic destructuration of protein and carbohydrate components of quinoa milk was successfully achieved applying alpha-amylase and proteases treatments. Fermented wholemeal quinoa milk using Weissella cibaria MG1 showed high viable cell counts (>109 cfu/mL), a pH of 5.16, and significantly higher water holding capacity (WHC, 100 %), viscosity (> 0. 5 Pa s) and exopolysaccharide (EPS) amount (40 mg/L) than the chemically acidified control. High EPS (dextran) concentration in quinoa milk caused earlier aggregation because more EPS occupy more space, and the chenopodin were forced to interact with each other. Direct observation of microstructure in fermented quinoa milk indicated that the network structures of EPS-protein could improve the texture of fermented quinoa milk. Overall, Weissella cibaria MG1 showed favorable technology properties and great potential for further possible application in the development of high viscosity fermented quinoa milk. The last part of the study investigate the ex-situ LAB-EPS (dextran) application compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. Three hydrocolloids, xanthan gum, dextran and hydroxypropyl methylcellulose, were incorporated into bread recipes based on high-protein flours, low-protein flours and coarse wholemeal flour. Hydrocolloid levels of 0–5 % (flour basis) were used in bread recipes to test the water absorption. The quality parameters of dough (farinograph, extensograph, rheofermentometre) and bread (specific volume, crumb structure and staling profile) were determined. Results showed that xanthan had negative impact on the dough and bread quality characteristics. HPMC and dextran generally improved dough and bread quality and showed dosage dependence. Volume of low-protein flour breads were significantly improved by incorporation of 0.5 % of the latter two hydrocolloids. However, dextran outperformed HPMC regarding initial bread hardness and staling shelf life regardless the flour applied in the formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dietary intake of sodium chloride has increased considerably over the last few decades due to changes in the human diet. This higher intake has been linked to a number of diseases including hypertension and other cardiovascular diseases. Numerous international health agencies, as well as the food industry, have now recommended a salt intake level of 5-6 g daily, approximately half of the average current daily intake level. Cereal products, and in particular bread, are a major source of salt in the Western diet. Therefore, any reduction in the level of salt in bread could have a major impact on global health. However, salt is a critical ingredient in bread production, and its reduction can have a deleterious effect on the production process as well as on the final bread quality characteristics such as shelf-life, bread volume and sensory characteristics, all deviating from the bakers’ and consumers’ expectations. This work addresses the feasibility of NaCl reduction in wheat bread focusing on options to compensate NaCl with the use of functional sourdoughs. Three strains were used for the application of low-salt bread; L. amylovorus DSM19280, W. cibaria MG1 and L. reuteri FF2hh2. The multifunctional strain L. reuteri FF2hh2 was tested the first time and its application could be demonstrated successfully. The functionalities were based on the production of exopolysaccharides as well as the production of antifungal compounds. While the exopolysaccharides, mainly high molecular dextrans, positively influenced mainly bread loaf volume, crumb structure and staling rate, the strains producing antifungal compounds prolonged the microbial shelf life significantly and compensated the lack of salt. The impact on the sensory characteristics of bread were evaluated by descriptive sensory evaluation. The increase in surface area as well as the presence of organic acids impacted significantly on the flavour profile of the sourdough bread samples. The flavour attribute “salt” could be enhanced by sourdough addition and increased the salty perception. Furthermore, a trained sensory panel evaluated for the first time the impact of yeast activity, based on different salt and yeast concentrations, on the volatile aroma profile of bread crumb samples. The analytical measurements using high resolution gas chromatography and proton-transfer-reaction mass spectrometry (PTR-MS) resulted in significantly different results based on different yeast activities. Nevertheless, the extent of the result could not be recognised by the sensory panel analysing the odour profile of the bread crumb samples. Hence, the consumer cannot recognised low-salt bread by its odour. The use of sourdough is a natural option to overcome the broad range of technological issues caused by salt reduction and also a more popular alternative compared to existing chemical salt replacers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response of Lactococcus lactis subsp. cremoris NCDO 712 to low water activity (aw) was investigated, both in relation to growth following moderate reductions in the aw and in terms of survival following substantial reduction of the aw with NaCI. Lc.lactis NCDO 712 was capable of growth in the presence of ≤ 4% w/v NaCI and concentrations in excess of 4% w/v were lethal to the cells. The presence of magnesium ions significantly increased the resistance of NCDO 712 to challenge with NaCI and also to challenge with high temperature or low pH. Survival of Lc.lactis NCDO 712 exposed to high NaCI concentrations was growth phase dependent and cells were most sensitive in the early exponential phase of growth. Pre-exposure to 3% w/v NaCI induced limited protection against subsequent challenge with higher NaCI concentrations. The induction was inhibited by chloramphenicol and even when induced, the response did not protect against NaCI concentrations> 10% w/v. When growing at low aw, potassium was accumulated by Lc. lactis NCDO 712 growing at low aw, if the aw was reduced by glucose or fructose, but not by NaCI. Reducing the potassium concentration of chemically defined medium from 20 to 0.5 mM) produced a substantial reduction in the growth rate, if the aw was reduced with NaCI, but not with glucose or fructose. The reduction of the growth rate correlated strongly with a reduction in the cytoplasmic potassium concentration and in cell volume. Addition of the compatible solute glycine betaine, partially reversed the inhibition of growth rate and partially restored the cell volume. The potassium transport system was characterised in cells grown in medium at both high and low aw. It appeared that a single system was present, which was induced approximately two-fold by growth at low aw. Potassium transport was assayed in vitro using cells depleted of potassium; the assay was competitively inhibited by Na+ and by the other monovalent cations NH4+, Li+, and Cs+. There was a strong correlation between the ability of strains of Lc. lactis subsp. lactis and subsp. cremoris to grow at low aw and their ability to accumulate the compatible solute glycine betaine. The Lc. lactis subsp. cremoris strains incapable of growth at NaCI concentrations> 2% w/v did not accumulate glycine betaine when growing at low aw, whereas strains capable of growth at NaCI concentrations up to 4% w/v did. A mutant, extremely sensitive to low aw was isolated from the parent strain Lc. lactis subsp. cremoris MG 1363, a plasmid free derivative of NCDO 712. The parent strain tolerated up to 4% w/v NaCI and actively accumulated glycine betaine when challenged at low aw. The mutant had lost the ability to accumulate glycine betaine and was incapable of growth at NaCI concentrations >2% w/v or the equivalent concentration of glucose. As no other compatible solute seemed capable of substitution for glycine betaine, the data suggest that the traditional; phenotypic speciation of strains on the basis of tolerance to 4% w/v NaCI can be explained as possession or lack of a glycine betaine transport system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies were undertaken to investigate proteolysis of the caseins during the initial stages of maturation of Cheddar cheese. Isolated caseins were hydrolyzed by enzymes thought to be of importance during cheese ripening and the resulting peptides isolated and identified. Large peptides were also isolated from Cheddar cheese and identified, thus enabling the extent to which casein degradation studies could be extrapolated to cheese to be established. The proteolytic specificity of chymosin on bovine αs1- and αs2-caseins and of plasmin on bovine αs1-casein were determined. The action of cathepsin D, the principal indigenous acid milk proteinase, on caseins was studied and its pH optimum and sensitivity to NaCI determined. The action of cathepsin D on αs1-, αs2-, β- and κ-caseins was compared with that of chymosin and was found to be generally similar for the hydrolysis of αs1- and κ-caseins but to differ for αs2-and β- caseins. β-Casein in solution was hydrolyzed by cell wall-associated proteinases from three strains of Lactococcus lactis; comparison of electrophoretograms of the hydrolyzates with those of Cheddar cheese indicated that no peptides produced by cell wall-associated proteinases were detectable in the cheeses. All the major peptides in the water-insoluble fraction of Cheddar cheese were isolated and identified. It was found that β-casein was degraded primarily by plasmin and αs1 -casein by chymosin. Initial chymosin and plasmin cleavage sites in αs1-, and β-casein, respectively, identified in these and other studies corresponded to the peptides isolated from cheese. The importance of non-starter lactic acid bacteria (NSLAB) to the maturation of Cheddar was studied in cheeses manufactured from raw, pasteurized or microfiltered milks. NSLAB were found to strongly influence the quality and patterns of proteolysis. Results presented in this thesis are consistent with the hypothesis that primary proteolysis in Cheddar is catalysed primarily by the action of chymosin and plasmin on intact αs1- and β-caseins, respectively. The resulting large peptides so produced are subsequently degraded by these enzymes and by proteinases and peptidases from the starter and NSLAB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A bacteriocin-producing strain of Lactobacillus paracasei DPC 4715 was used as an adjunct culture in Cheddar cheese in order to control the growth of “wild” nonstarter lactic acid bacteria. No suppression of growth of the indicator strain was observed in the experimental cheese. The bacteriocin produced by Lactobacillus paracasei DPC 4715 was sensitive to chymosin and cathepsin D and it may have been cleaved by the rennet used for the cheese manufactured or by indigenous milk proteases. A series of studies were performed using various microbial adjuncts to influence cheese ripening. Microbacterium casei DPC 5281, Corynebacterium casei DPC 5293 and Corynebacterium variabile DPC 5305 were added to the cheesemilk at level of 109 cfu/ml resulting in a final concentration of 108 cfu/g in Cheddar cheese. The strains significantly increased the level of pH 4.6-soluble nitrogen, total free amino acids after 60 and 180 d of ripening and some individual free amino acids after 180 d. Yarrowia lipolytica DPC 6266, Yarrowia lipolytica DPC 6268 and Candida intermedia DPC 6271 were used to accelerate the ripening of Cheddar cheese. Strains were grown in YG broth to a final concentration of 107 cfu/ml, microfluidized, freeze-dried and added to the curd during salting at level of 2% w/w. The yeasts positively affected the primary, secondary proteolysis and lipolysis of cheeses and had aminopeptidase, dipeptidase, esterase and 5’ phosphodiestere activities that contributed to accelerate the ripening and improve the flavor of cheese. Hafia alvei was added to Cheddar cheesemilk at levels of 107 cfu/ml and 108 cfu/ml and its contribution during ripening was evaluated. The strain significantly increased the level of pH 4.6-soluble nitrogen, total free amino-acids, and some individual free amino-acids of Cheddar cheese, whereas no differences in the urea-polyacrylamide gel electrophoresis (urea-PAGE) electrophoretograms of the cheeses were detected. Hafia alvei also significantly increased the level of some biogenic amines. A low-fat Cheddar cheese was made with Bifidobacterium animalis subsp. lactis, strain BB-12® at level of 108 cfu/ml, as a probiotic adjunct culture and Hi-Maize® 260 (resistant high amylose maize starch) at level of 2% and 4% w/v, as a prebiotic fiber which also played the role of fat replacer. Bifidobacterium BB-12 decreased by 1 log cycle after 60 d of ripening and remained steady at level of ~107 cfu/g during ripening. The Young’s modulus also increased proportionally with increasing levels of Hi-maize. Hencky strain at fracture decreased over ripening and increased with increasing in fat replacer. A cheese based medium (CBM) was developed with the purpose of mimicking the cheese environment at an early ripening stage. The strains grown in CBM showed aminopeptidase activity against Gly-, Arg-, Pro- and Phe-p-nitroanalide, whereas, when grown in MRS they were active against all the substrates tested. Both Lb. danicus strains grown in MRS and in CBM had aminotransferase activity towards aromatic amino acids (Phe and Trp) and also branched-chain amino acids (Leu and Val). Esterase activity was expressed against p-nitrophenyl-acetate (C2), pnitrophenyl- butyrate (C4) and p-nitrophenyl-palmitate (C16) and was significantly higher in CBM than in MRS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of sourdough can improve texture, structure, nutritional value, staling rate and shelf life of wheat and gluten-free breads. These quality improvements are associated with the formation of organic acids, exopolysaccharides (EPS), aroma or antifungal compounds. Initially, the suitability of two lactic acid bacteria strains to serve as sourdough starters for buckwheat, oat, quinoa, sorghum and flours was investigated. Wheat flour was chosen as a reference. The obligate heterofermentative lactic acid bacterium (LAB) Weissella cibaria MG1 (Wc) formed the EPS dextran (a α-1,6-glucan) from sucrose in situ with a molecular size of 106 to 107 kDa. EPS formation in all breads was analysed using size exclusion chromatography and highest amounts were formed in buckwheat (4 g/ kg) and quinoa sourdough (3 g/ kg). The facultative heterofermentative Lactobacillus plantarum FST1.7 (Lp) was identified as strong acidifier and was chosen due to its ubiquitous presence in gluten-free as well as wheat sourdoughs (Vogelmann et al. 2009). Both Wc and Lp, showed highest total titratable acids in buckwheat (16.8 ml; 26.0 ml), teff (16.2 ml; 24.5 ml) and quinoa sourdoughs (26.4 ml; 35.3 ml) correlating with higher amounts of fermentable sugars and higher buffering capacities. Sourdough incorporation reduced the crumb hardness after five days of storage in buckwheat (Wc -111%), teff (Wc -39%) and wheat (Wc -206%; Lp -118%) sourdough breads. The rate of staling (N/ day) was reduced in buckwheat (Ctrl 8 N; Wc 3 N; Lp 6 N), teff (Ctrl 13 N; Wc 9 N; Lp 10 N) and wheat (Ctrl 5 N; Wc 1 N; Lp 2 N) sourdough breads. Bread dough softening upon Wc and Lp sourdough incorporation accounted for increased crumb porosity in buckwheat (+10.4%; +4.7), teff (+8.1%; +8.3%) and wheat sourdough breads (+8.7%; +6.4%). Weissella cibaria MG1 sourdough improved the aroma quality of wheat bread but had no impact on aroma of gluten-free breads. Microbial shelf life however, was not prolonged in any of the breads regardless of the starter culture used. Due to the high prevalence of insulin-dependent diabetes mellitus particular amongst coeliac patients, glycaemic control is of great (Berti et al. 2004). The in vitro starch digestibility of gluten-free breads with and without sourdough addition was analysed to predict the GI (pGI). Sourdough can decrease starch hydrolysis in vitro, due to formation of resistant starch and organic acids. Predicted GI of gluten-free control breads were significantly lower than for the reference white wheat bread (GI=100). Starch granule size was investigated with scanning electron microscopy and was significantly smaller in quinoa flour (<2 μm). This resulted in higher enzymatic susceptibility and hence higher pGI for quinoa bread (95). Lowest hydrolysis indexes for sorghum and teff control breads (72 and 74, respectively) correlate with higher gelatinisation peak temperatures (69°C and 71°C, respectively). Levels of resistant starch were not increased by addition of Weissella cibaria MG1 (weak acidifier) or Lactobacillus plantarum FST1.7 (strong acidifier). The pGI was significantly decreased for both wheat sourdough breads (Wc 85; Lp 76). Lactic acid can promote starch interactions with gluten hence decreasing starch susceptibility (Östman et al. 2002). For most gluten-free breads, the pGI was increased upon sourdough addition. Only sorghum and teff Lp sourdough breads (69 and 68, respectively) had significantly decreased pGI. Results suggest that the increase of starch hydrolysis in gluten-free breads was related to mechanism other than presence of organic acids and formation of resistant starch.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacteriophages belonging to the Siphoviridae family represent viruses with a noncontractile tail that function as extremely efficient bacterium-infecting nanomachines. The Siphoviridae phages TP901-1 and Tuc2009 infect Lactococcus lactis, and both belong to the so-called P335 species. As P335 phages are typically capable of a lytic and lysogenic life cycle, a number of molecular tools are available to analyse their virions. This doctoral thesis describes mutational and molecular analyses of TP901-1 and Tuc2009, with emphasis on the role of their tail-associated structural proteins. Several novel and intriguing findings discovered during the course of this study on the nature of Siphoviridae phages furthers a basic molecular understanding of their virions, and the role of their virion proteins, during the initial stages of infection. While Siphoviridae virions represent complex quaternary structures of multiple proteins and subunits thereof, mutagenic analysis represents an efficient mechanism to discretely characterize the function of individual proteins, and constituent amino acids, in the assembly of the phage structure and their biological function. However, as always, more research is required to delve deeper into the mechanisms by which phages commence infection. This is important to advance our understanding of this intricate process and to facilitate application of such findings to manipulate phage infections. On the one hand, we may want to prevent phages from infecting starter cultures used in the dairy industry, while on the other hand it may be desirable to optimize viral infection for the application of phages as bacterial parasites and therapeutic agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Defects in commercial cheese result in a downgrading of the final cheese and a consequential economic loss to the cheese producer. Developments of defects in cheese are often not fully understood and therefore not controllable by the producer. This research investigated the underlying factors in the development of split and secondary fermentation defect and of pinking defects in commercial Irish cheeses. Split defect in Swiss-type cheese is a common defect associated with eye formation and manifests as slits and cracks visible in the cut cheese loaf (Reinbold, 1972; Daly et al., 2010). No consensus exists as to the definitive causes of the defect and possible factors which may contribute to the defect were reviewed. Models were derived to describe the relationship between moisture, pH, and salt levels and the distance from sample location to the closest external block surface during cheese ripening. Significant gradients within the cheese blocks were observed for all measured parameters in cheeses at 7 day post/after manufacture. No significant pH gradient was found within the blocks on exit from hot-room ripening and at three months post exit from the hot-room. Moisture content reached equilibrium within the blocks between exit from hot-room and 3 months after exit from hot-room while salt and salt-to-moisture levels had not reached equilibrium within the cheese blocks even at three months after exit from hot-room ripening. A characterisation of Swiss-type cheeses produced from a seasonal milk supply was undertaken. Cheeses were sampled on two days per month of the production year, at three different times during the manufacturing day, at internal and external regions of the cheese block and at four ripening time points (7 days post manufacture, post hot-room, 14 days post hot-room and 3 months in a cold room after exit from hot-room). Compositional, biochemical and microbial indices were determined, and the results were analysed as a splitplot with a factorial arrangement of treatments (season, time of day, area) on the main plot and ripening time on the sub-plot. Season (and interactions) had a significant effect on pH and salt-in-moisture levels (SM), mean viable counts of L. helveticus, propionic acid and non-starter lactic acid bacteria, levels of primary and secondary proteolysis and cheese firmness. Levels of proteolysis increased significantly during hot-room ripening but also during cold room storage, signifying continued development of cheese ripening during cold storage (> 8°C). Rheological parameters (e.g. springiness and cohesiveness) were significantly affected by interactions between ripening and location within cheese blocks. Time of day of manufacture significantly affected mean cheese calcium levels at 7 days post manufacture and mean levels of arginine and mean viable counts of NSLAB. Cheeses produced during the middle of the production day had the best grading scores and were more consistent compared to cheeses produced early or late during day of manufacture. Cheeses with low levels of S/M and low values of resilience were associated with poor grades at 7 days post manufacture. Chesses which had high elastic index values and low values of springiness in the external areas after exit from hot-room ripening also obtained good commercial grades. Development of a pink colour defect is an intermittent defect in ripened cheese which may or may not contain an added colourant, e.g., annatto. Factors associated with the defect were reviewed. Attempts at extraction and identification of the pink discolouration were unsuccessful. The pink colour partitioned with the water insoluble protein fraction. No significant difference was observed between ripened control and defect cheese for oxygen levels and redox potential or for the results of elemental analysis. A possible relationship between starter activity and defect development was established in cheeses with added coulourant, as lower levels of residual galactose and lactose were observed in defective cheese compared to control cheese free of the defect. Swiss-type cheese without added colourant had significantly higher levels of arginine and significantly lower lactate levels. Flow cell cytometry indicated that levels of bacterial cell viability and metabolic state differed between control and defect cheeses (without added colourant). Pyrosequencing analysis of cheese samples with and without the defect detected the previously unreported bacteria in cheese, Deinococcus thermus (a potential carotenoid producer). Defective Swiss-type cheeses had elevated levels of Deinococcus thermus compared to control cheeses, however the direct cause of pink was not linked to this bacterium alone. Overall, research was undertaken on underlying factors associated with the development of specific defects in commercial cheese, but also characterised the dynamic changes in key microbial and physicochemical parameters during cheese ripening and storage. This will enable the development of processing technologies to enable seasonal manipulation of manufacture protocols to minimise compositional and biochemical variability and to reduce and inhibit the occurrence of specific quality defects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidation-reduction (redox) potential is a fundamental physicochemical parameter that affects the growth of microorganisms in dairy products and contributes to a balanced flavour development in cheese. Even though redox potential has an important impact on the quality of dairy products, it is not usually monitored in dairy industry. The aims of this thesis were to develop practical methods for measuring redox potential in cheese, to provide detailed information on changes in redox potential during the cheesemaking and cheese ripening and how this parameter is influenced by starter systems and to understand the relationship between redox potential and cheese quality. Methods were developed for monitoring redox potential during cheesemaking and early in ripening. Changes in redox potential during laboratory scale manufacture of Cheddar, Gouda, Emmental, and Camembert cheeses were determined. Distinctive kinetics of reduction in redox potential during cheesemakings were observed, and depended on the cheese technology and starter culture utilised. Redox potential was also measured early in ripening by embedding electrodes into Cheddar cheese at moulding together with the salted curd pieces. Using this approach it was possible to monitor redox potential during the pressing stage. The redox potential of Emmental cheese was also monitored during ripening. Moreover, since bacterial growth drives the reduction in redox potential during cheese manufacture and ripening, the ability of Lactococcus lactis strains to affect redox potential was studied. Redox potential of a Cheddar cheese extract was altered by bacterial growth and there were strain-specific differences in the nature of the redox potential/time curves obtained. Besides, strategies to control redox potential during cheesemaking and ripening were developed. Oxidizing or reducing agents were added to the salted curd before pressing and results confirmed that a negative redox potential is essential for the development of sulfur compounds in Cheddar cheese. Overall, the studies described in this thesis gave an evidence of the importance of the redox potential on the quality of dairy products. Redox potential could become an additional parameter used to select microorganisms candidate as starters in fermented dairy products. Moreover, it has been demonstrated that the redox potential influences the development of flavour component. Thus, measuring continuously changes in redox potential of a product and controlling, and adjusting if necessary, the redox potential values during manufacture and ripening could be important in the future of the dairy industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of fortification of skim milk powder and sodium caseinate on Cheddar cheeses was investigated. SMP fortification led to decreased moisture, increased yield, higher numbers of NSLAB and reduced proteolysis. The functional and texture properties were also affected by SMP addition and formed a harder, less meltable cheese than the control. NaCn fortification led to increased moisture, increased yield, decreased proteolysis and higher numbers of NSLAB. The functional and textural properties were affected by fortification with NaCn and formed a softer cheese that had similar or less melt than the control. Reducing the lactose:casein ratio of Mozzarella cheese by using ultrafiltration led to higher pH, lower insoluble calcium, lower lactose, galactose and lactic acid levels in the cheese. The texture and functional properties of the cheese was affected by varying the lactose:casein ratio and formed a harder cheese that had similar melt to the control later in ripening. The flavour and bake properties were also affected by decreased lactose:casein ratio; the cheeses had lower acid flavour and blister colour than the control cheese. Varying the ratio of αs1:β-casein in Cheddar cheese affected the texture and functionality of the cheese but did not affect insoluble calcium, proteolysis or pH. Increasing the ratio of αs1:β-casein led to cheese with lower meltability and higher hardness without adverse effects on flavour. Using camel chymosin in Mozzarella cheese instead of calf chymosin resulted in cheese with lower proteolysis, higher softening point, higher hardness and lower blister quantity. The texture and functional properties that determine the shelf life of Mozzarella were maintained for a longer ripening period than when using calf chymosin therefore increasing the window of functionality of Mozzarella. In summary, the results of the trials in this thesis show means of altering the texture, functional, rheology and sensory properties of Mozzarella and Cheddar cheeses.