4 resultados para Ocular motility disorders
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Vaccinia virus, the prototype member of the orthopoxviruses, is the largest and the most complex virus known. After replication of its genome and expression of the viral proteins, vaccinia undergoes a complicated assembly process which produces two distinct infectious forms. The first of these, the intracellular mature virus (IMV), develops from the immature virion (IV) after packaging of the genome and cleavage of the core proteins. During the transition of the IV to the IMV, a new core structure develops in the centre of the virion, concomitantly with the appearance of spike-like structures which extend between this core and the surrounding membranes of the IMV. I describe the characterization of p39 (gene A4L) which is hypothesized to be one component of these spikes. p39 is a core protein, but has strong associations with the membranes surrounding the IMV, possibly due to an interaction with p21 (A17L). Due to its location between the core and the membranes of the IMV, p39 is ideally situated to act as a matrix-like linker protein and may play a role in the formation of the core during the transition of the IV to the IMV. The IMV is subsequently wrapped by a membrane cisterna derived from the trans Golgi network, to form the intracellular enveloped virus (IEV). I show that the IEV can co-opt the actin cytoskeleton of the host cell in order to induce the formation of actin tails which extend from one side of the virion. These actin tails propel the virus particle, both intra- and intercellularly, at speeds of up to 2.8µm/min. On reaching the plasma membrane, the virus particles project out from the cell surface at the tip of virally induced microvilli. The outer membrane of the IEV is thought to fuse with the plasma membrane at the tip of these projections, thus exposing the second infectious form of vaccinia. This is thought to be the means by which the cell-associated enveloped virus is presented to neighbouring cells, thereby facilitating the direct cell-to-cell spread of virus particles.
Resumo:
Childhood asthma, allergic rhinitis and eczema are complex heterogenic chronic inflammatory allergic disorders which constitute a major burden to children, their families. The prevalence of childhood allergic disorders is increasing worldwide and merely rudimentary understanding exists regarding causality, or the influence of the environment on disease expression. Phase Three of the International Study of Asthma and Allergy in Childhood (ISAAC) reported that Irish adolescents had the 4th highest eczema and rhinoconjunctivitis prevalence and 3rd highest asthma prevalence in the world. There are no ISAAC data pertaining to young Irish children. In 2002, Sturley reported a high prevalence of current asthma in Cork primary school children aged 6-9 years. This thesis comprises of three cross-sectional studies which examined the prevalence of and associations with childhood allergy and a quasi-retrospective cohort study which observed the natural history of allergy from 6-9 until 11-13 years. Although not part of ISAAC, data was attained by parentally completed ISAAC-based questionnaires, using the ISAAC protocol. The prevalence, natural history and risk factors of childhood allergy in Ireland, as described in this thesis, echo those in worldwide allergy research. The variations of prevalence in different populations worldwide and the recurring themes of associations between childhood allergy and microbial exposures, from farming environments and/or gastrointestinal infections, as shown in this thesis, strengthen the mounting evidence that microbial exposure on GALT may hold the key to the mechanisms of allergy development. In this regard, probiotics may be an area of particular interest in allergy modification. Although their effects in relation to allergy, have been investigated now for several years, our knowledge of their diversity, complex functions and interactions with gut microflora, remain rudimentary. Birth cohort studies which include genomic and microbiomic research are recommended in order to examine the underlying mechanisms and the natural course of allergic diseases.
Resumo:
The p75 neurotrophin receptor (p75NTR) is a member of the tumour necrosis factor superfamily, which relies on the recruitment of cytosolic protein partners - including the TNF receptor associated factor 6 (TRAF6) E3 ubiquitin ligase - to produce cellular responses such as apoptosis, survival, and inhibition of neurite outgrowth. Recently,p75NTR was also shown to undergo γ-secretase-mediated regulated intramembrane proteolysis, and the receptor ICD was found to migrate to the nucleus where it regulates gene transcription. Moreover, γ-secretase-mediated proteolysis was shown to be involved in glioblastoma cell migration and invasion. In this study we report that TRAF6-mediated K63-linked polyubiquitination at multiple or alternative lysine residues influences p75NTR-ICD stability in vitro. In addition, we found that TRAF6-mediated ubiquitination of p75NTR is not influenced by inhibition of dynamin. Moreover, we report beta-transducin repeats-containing protein (β-TrCP) as a novel E3- ligase that ubiquitinates p75NTR, which is independent of serine phosphorylation of the p75NTR destruction motif. In contrast to its influence on other substrates, co-expression of β-TrCP did not reduce p75NTR stability. We created U87-MG glioblastoma cell lines stably expressing wild type, γ-secretaseresistant and constitutively cleaved receptor, as well as the ICD-stabilized mutant K301R. Interestingly, only wild-type p75NTR induces increased glioblastoma cell migration, which could be reversed by application of γ-secretase inhibitor. Microarray and qRT-PCR analysis of mRNA transcripts in these cell lines yielded several promising genes that might be involved in glioblastoma cell migration and invasion, such as cadherin 11 and matrix metalloproteinase 12. Analysis of potential transcription factor binding sites revealed that transcription of these genes might be regulated by well known p75NTR signalling cascades such as NF-κB or JNK signalling, which are independent of γ-secretase-mediated cleavage of the receptor. In contrast, while p75NTR overexpression was confirmed in melanoma cell lines and a patient sample of melanoma metastasis to the brain, inhibition of γ-secretase did not influence melanoma cell migration. Collectively, this study provides several avenues to better understand the physiological importance of posttranslational modifications of p75NTR and the significance of the receptor in glioblastoma cell migration and invasion.
Resumo:
The past two decades have seen substantial gains in our understanding of the complex processes underlying disturbed brain-gut communication in disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Despite a growing understanding of the neurobiology of brain-gut axis dysfunction, there is a relative paucity of investigations into how the various factors involved in dysregulating the brain-gut axis, including stress, immune activation and pain, could impact on fundamental brain processes such as cognitive performance. To this end, we proposed a cognitive neurobiology of brain-gut axis dysfunction and took a novel approach to examine how disturbed brain-gut interactions may manifest as altered cognitive performance in IBS and IBD, both cross-sectionally and prospectively. We have demonstrated that, disorders of the brain-gut axis are characterised by stable deficits in specific cognitive domains. Specifically, patients with IBS exhibit a consistent hippocampal mediated visuospatial memory impairment. In addition we have found evidence to suggest a similar visuospatial impairment in IBD. However, our most consistent finding within this population was that patients with Crohn’s disease exhibit impaired selective attention/ response inhibition on the classic Stroop interference test. These cognitive deficits may serve to perpetuate and sustain brain-gut axis dysfunction. Furthermore, this research has shed light on some of the underlying neurobiological mechanisms that may be mediating cognitive dysfunction in IBS. Our findings may have significant implications for the individual who suffers from a brain-gut axis disorder and may also inform future treatment strategies. Taken together, these findings can be incorporated into existing neurobiological models of brain-gut axis dysfunction, to develop a more comprehensive model accounting for the cognitive-neurobiology of brain-gut axis disorders. This has furthered our understanding of disease pathophysiology and may ultimately aid in both the diagnosis and treatment of these highly prevalent, but poorly understood disorders.