2 resultados para OXO KETENE DITHIOACETALS
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The research described in this thesis involves the synthesis of α-diazo-β-oxo sulfoxides, and exploration of their reactivity. The first chapter includes an introduction to diazocarbonyl chemistry, specifically focusing on the synthesis of diazo compounds, and diazosulfoxide derivatives. The chemistry of sulfines, in particular the generation of α-oxo sulfines and their subsequent trapping as cycloadducts and dimerisation is discussed. The results of this research are discussed in the second and third chapters. The design, synthesis and reactivity of α-diazo-β-oxo sulfoxides is described in chapter 2 where diazo transfer adjacent to sulfoxides to form stable α-diazo-β-oxo sulfoxides has been achieved in cyclic systems. Decomposition of theses α-diazosulfoxides using rhodium carboxylate or carboxamide catalysts is also described. These processes proceed via a Wolff type rearrangement to form α-oxo sulfine intermediates, which were trapped as cycloadducts with dienes. In the absence of a diene trap, dimerisation of the sulfine intermediate was observed. Intramolecular C-H insertion reasctios of α-diazo-α-sulfonyl esters to form substituted sulfolane esters is described in chapter 3. The reactivity of these sulfolane esters is briefly explored. The fourth chapter contains the experimental details and the spectral and analytical data for all new compounds reported.
Resumo:
This thesis describes a systematic investigation of the mechanistic and synthetic aspects of intramolecular reactions of a series of α-diazo-β-oxo sulfone derivatives using copper and, to a lesser extent, rhodium catalysts. The key reaction pathways explored were C–H insertion and cyclopropanation, with hydride transfer competing in certain instances. Significantly, up to 98% ee has been achieved in the C–H insertion processes using copper-NaBARF-bisoxazoline catalysts, with the presence of the additive NaBARF critical to the efficiency of the transformations. This novel synthetic methodology provides access to a diverse range of enantioenriched heterocyclic compounds including thiopyrans, sulfolanes, β- and γ-lactams, in addition to carbocycles such as fused cyclopropanes. The synthesis of the α-diazosulfones required for subsequent investigations is initially described. Of the twenty seven diazo sulfones described, nineteen are novel and are fully characterised in this work. The discussion is subsequently focused on a study of the copper and rhodium catalysed reactions of the α-diazosulfones with Chapter Four concentrated on highly enantioselective C–H insertion to form thiopyrans and sufolanes, Chapter Five focused on C–H insertion to form fused sulfolanes, Chapter Six focused on C–H insertion in sulfonyl α-diazoamides where both lactam formation and / or thiopyran / sulfolane formation can result from competing C–H insertion pathways, while Chapter Seven focuses on cyclopropanation to yield fused cyclopropane derviatives. One of the key outcomes of this work is an insight into the steric and / or electronic factors on both the substrate and the catalyst which control regio-, diastereo- and enantioselectivity patterns in these synthetically powerful transformations. Full experimental details for the synthesis and spectral characterisation of the compounds are included at the end of each Chapter, with details of chiral stationary phase HPLC analysis and assignment of absolute stereochemistry included in the appendix.