4 resultados para Nitrate reductase enzyme

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The γ-secretase protease complexes and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signalling events, which have a central role in Alzheimer’s disease, cancer progression and immune surveillance. It has previously been reported that the Interleukin-1 receptor, type 1, (IL-1R1) is a substrate for regulated intramembrane proteolysis, mediated by presenilin (PS)-dependent γ-secretase activity. The aims of this project were twofold. Firstly, to determine the conservation of regulated intramembrane proteolysis as a physiological occurrence amongst other cytokine receptors. In this regard, similar to IL-1R1, we identified the Tumour necrosis factor receptor type 1 (TNFR1) and the Toll like receptor 4 (TLR4) as novel γ-secretase substrates. Secondly, given that the diversity of signalling events mediated by the IL-1R1, TLR4 and TNFR1 are spatially segregated, we investigated the spatial distribution, subcellular trafficking and subcellular occurrence of regulated intramembrane proteolysis of IL-1R1, TLR4 and TNFR1. Using dynasore an inhibitor of clathrin-dependent receptor endocytosis, both ectodomain shedding and γ-secretase-mediated cleavage of IL-1R1 were observed post-internalization. In contrast, TNFR-1 underwent ectodomain shedding at the cell surface followed by endosomal γ-secretase-mediated cleavage. Furthermore, immortalised fibroblasts from PS1-deficient mice showed impaired γ-secretasemediated cleavage of IL-1R1 and TNFR1, indicating that both are cleaved by PS1-and not PS2-containing γ-secretase complexes. Subcellular fractionation and immunofluorescence studies revealed that the γ-secretase generated IL-1R1 ICD translocates to the nucleus on IL-1β stimulation. These observations further demonstrate the novel PS-dependent means of modulating IL-1β, LPS and TNFα- mediated immune responses by regulating IL-1R1/TLR4/TNFR1 protein levels within the cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SREBP (sterol response element binding proteins) transcription factors are central to regulating de novo biosynthesis of cholesterol and fatty acids. The SREBPs are regulated by retention or escape from the ER to the Golgi where they are proteolytically cleaved into active forms. The SREBP cleavage activating protein (SCAP) and the INSIG proteins are essential in this regulatory process. The aim of this thesis is to further characterise the molecular and cellular aspects surrounding regulation of SREBP processing. SREBP and SCAP are known to interact via their carboxy-terminal regulatory domains (CTDs) but this interaction is poorly characterised. Significant steps were achieved in this thesis towards specific mapping of the interaction site. These included cloning and over expression and partial purification of tagged SREBP1 and SREBP2 CTDs and probing of a SCAP peptide array with the CTDs. Results from the SREBP2 probing were difficult to interpret due to insolubility issues with the protein, however, probing with SREBP1 revealed five potential binding sites which were detected reproducibly. Further research is necessary to overcome SREBP2 insolubility issues and to confirm the identified SREBP1 interaction site(s) on SCAP. INSIG1 has a central role in regulating SREBP processing and in regulating stability of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a rate limiting enzyme in cholesterol biosynthesis. There are two protein isoforms of human INSIG1 produced through the use of two in-frame alternative start sites. Bioinformatic analysis indicated that the presence of two in-frame start sites within the 5-prime region of INSIG1 mRNA is highly conserved and that production of two isoforms of INSIG1is likely a conserved event. Functional differences between these two isoforms were explored. No difference in either the regulation of SREBP processing or HMGCR degradation between the INSIG1 isoforms was observed and the functional significance of the two isoforms is as yet unclear. The final part of this thesis focused on enhancing the cytotoxicity of statins by targeted inhibition of SREBP processing by oxysterols. Statins have significant potential as anti-cancer agents as they inhibit the activity of HMGCR leading to a deficiency in mevalonate which is essential for cell survival. The levels of HMGCR fluctuate widely due to cholesterol feedback of SREBP processing. The relationship between sterol feedback and statin mediated cell death was investigated in depth in HeLa cells. Down regulation of SREBP processing by sterols significantly enhanced the efficacy of statin mediated cell death. Investigation of sterol feedback in additional cancer cell lines showed that sterol feedback was absent in cell lines A- 498, DU-145, MCF-7 and MeWo but was present in cell lines HT-29, HepG2 and KYSE-70. In the latter inhibition of SREBP processing using oxysterols significantly enhanced statin cytotoxicity. The results indicate that this approach is valid to enhance statin cytotoxicity in cancer cells, but may be limited by deregulation of SREBP processing and off target effects of statins, which were observed for some of the cancer cell lines screened.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis was undertaken to investigate the relevance of two bacterial isoprenoid biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-phosphate (MEP)) for host-microbe interactions. We determined a significant reduction in microbial diversity in the murine gut microbiota (by next generation sequencing) following oral administration of a common anti-cholesterol drug Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase (HMG-R) for inhibition of MVAL formation. In tandem we identified significant hepatic and intestinal off-target alterations to the murine metabolome indicating alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis with implications on community structure of the gastrointestinal microbiota in statin-treated animals. However we found no effect on local Short Chain Fatty Acid biosynthesis (metabolic health marker in our model). We demonstrated direct inhibition of bacterial growth in-vitro by RSV which correlated with reductions in bacterial MVAL formation. However this was only at high doses of RSV. Our observations demonstrate a significant RSV-associated impact on the gut microbiota prompting similar human analysis. Successful deletion of another MVAL pathway enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe isoprenoid biosynthesis determined that the enzyme is non-essential for normal growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence for alternative means of synthesis of the HMG-CoA substrate that could render mvaS activity redundant under our test conditions. Finally, we showed by global gene expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes of immunity and antigen presentation in THP-1 cells at nanomolar levels. We infected THP-1 cells with wild type or HMBPP under/over-producing L. monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon overall host responses to Listeria infection. Overall our findings provide greater insights regarding bacterial isoprenoid biosynthetic pathways for host-microbe/microbe-host dialogue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic pollutant chemicals pose a major threat to aquatic organisms. There is a need for more research on emerging categories of environmental chemicals such as nanomaterials, endocrine disruptors and pharmaceuticals. Proteomics offers options and advantages for early warning of alterations in environmental quality by detecting sub-lethal changes in sentinel species such as the mussel, Mytilus edulis. This thesis aimed to compare the potential of traditional biomarkers (such as enzyme activity measurement) and newer redox proteomic approaches. Environmental proteomics, especially a redox proteomics toolbox, may be a novel way to study pollutant effects on organisms which can also yield information on risks to human health. In particular, it can probe subtle biochemical changes at sub-lethal concentrations and thus offer novel insights to toxicity mechanisms. In the first instance, the present research involved a field-study in three stations in Cork Harbour, Ireland (Haulbowline, Ringaskiddy and Douglas) compared to an outharbour control site in Bantry Bay, Ireland. Then, further research was carried out to detect effects of anthropogenic pollution on selected chemicals. Diclofenac is an example of veterinary and human pharmaceuticals, an emerging category of chemical pollutants, with potential to cause serious toxicity to non-target organisms. A second chemical used for this study was copper which is a key source of contamination in marine ecosystems. Thirdly, bisphenol A is a major anthropogenic chemical mainly used in polycarbonate plastics manufacturing that is widespread in the environment. It is also suspected to be an endocrine disruptor. Effects on the gill, the principal feeding organ of mussels, were investigated in particular. Effects on digestive gland were also investigated to compare different outcomes from each tissue. Across the three anthropogenic chemicals studied (diclofenac, copper and bisphenol A), only diclofenac exposure did not show any significant difference towards glutathione transferase (GST) responses. Meanwhile, copper and bisphenol A significantly increased GST in gill. Glutathione reductase (GR) enzyme analysis revealed that all three chemicals have significant responses in gill. Catalase activity showed significant differences in digestive gland exposed to diclofenac and gills exposed to bisphenol A. This study focused then on application of redox proteomics; the study of the oxidative modification of proteins, to M. edulis. Thiol proteins were labelled with 5-iodoacetamidofluorescein prior to one-dimensional and two-dimensional electrophoresis. This clearly revealed some similarities on a portion of the redox proteome across chemical exposures indicating where toxicity mechanism may be common and where effects are unique to a single treatment. This thesis documents that proteomics is a robust tool to provide valuable insights into possible mechanisms of toxicity of anthropogenic contaminants in M. edulis. It is concluded that future research should focus on gill tissue, on protein thiols and on key individual proteins discovered in this study such as calreticulin and arginine kinase which have not previously been considered as biomarkers in aquatic toxicology prior to this study.