5 resultados para Network-based IP mobility
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis explores the drivers of innovation in Irish high-technology businesses and estimates, in particular, the relative importance of interaction with external businesses and other organisations as a source of knowledge for innovation at the business-level. The thesis also examines the extent to which interaction for innovation in these businesses occurs on a local or regional basis. The study uses original survey data of 184 businesses in the Chemical and Pharmaceutical, Information and Communications Technology and Engineering and Electronic Devices sectors. The study considers both product and process innovation at the level of the business and develops new measures of innovation output. For the first time in an Irish study, the incidence and frequency of interaction is measured for each of a range of agents, other group companies, suppliers, customers, competitors, academic-based researchers and innovation-supporting agencies. The geographic proximity between the business and each of the most important of each of each category of agent is measured using average one-way driving distance, which is the first time such a measure has been used in an Irish study of innovation. Utilising econometric estimation techniques, it is found that interaction with customers, suppliers and innovation-supporting agencies is positively associated with innovation in Irish high-technology businesses. Surprisingly, however, interaction with academic-based researchers is found to have a negative effect on innovation output at the business-level. While interaction generally emerges as a positive influence on business innovation, there is little evidence that this occurs at a local or regional level. Furthermore, there is little support for the presence of localisation economies for high-technology sectors, though some tentative evidence of urbanisation economies. This has important implications for Irish regional, enterprise and innovation policy, which has emphasised the development of clusters of internationally competitive businesses. The thesis brings into question the suitability of a cluster-driven network based approach to business development and competitiveness in an Irish context.
Resumo:
Existing Building/Energy Management Systems (BMS/EMS) fail to convey holistic performance to the building manager. A 20% reduction in energy consumption can be achieved by efficiently operated buildings compared with current practice. However, in the majority of buildings, occupant comfort and energy consumption analysis is primarily restricted by available sensor and meter data. Installation of a continuous monitoring process can significantly improve the building systems’ performance. We present WSN-BMDS, an IP-based wireless sensor network building monitoring and diagnostic system. The main focus of WSN-BMDS is to obtain much higher degree of information about the building operation then current BMSs are able to provide. Our system integrates a heterogeneous set of wireless sensor nodes with IEEE 802.11 backbone routers and the Global Sensor Network (GSN) web server. Sensing data is stored in a database at the back office via UDP protocol and can be access over the Internet using GSN. Through this demonstration, we show that WSN-BMDS provides accurate measurements of air-temperature, air-humidity, light, and energy consumption for particular rooms in our target building. Our interactive graphical user interface provides a user-friendly environment showing live network topology, monitor network statistics, and run-time management actions on the network. We also demonstrate actuation by changing the artificial light level in one of the rooms.
Resumo:
Adequate hand-washing has been shown to be a critical activity in preventing the transmission of infections such as MRSA in health-care environments. Hand-washing guidelines published by various health-care related institutions recommend a technique incorporating six hand-washing poses that ensure all areas of the hands are thoroughly cleaned. In this paper, an embedded wireless vision system (VAMP) capable of accurately monitoring hand-washing quality is presented. The VAMP system hardware consists of a low resolution CMOS image sensor and FPGA processor which are integrated with a microcontroller and ZigBee standard wireless transceiver to create a wireless sensor network (WSN) based vision system that can be retargeted at a variety of health care applications. The device captures and processes images locally in real-time, determines if hand-washing procedures have been correctly undertaken and then passes the resulting high-level data over a low-bandwidth wireless link. The paper outlines the hardware and software mechanisms of the VAMP system and illustrates that it offers an easy to integrate sensor solution to adequately monitor and improve hand hygiene quality. Future work to develop a miniaturized, low cost system capable of being integrated into everyday products is also discussed.
Resumo:
A wireless sensor network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. In addition, minimising the number of relay nodes might lead to long routing paths to the sink, which may cause problems of data latency. This data latency is extremely important in wireless sensor network applications such as battlefield surveillance, intrusion detection, disaster rescue, highway traffic coordination, etc. where they must not violate the real-time constraints. Therefore, we also consider the problem of deploying multiple sinks in order to improve the network performance. Previous research has only parts of this problem in isolation, and has not properly considered the problems of moving through a constrained environment or discovering changes to that environment during the repair or network quality after the restoration. In this thesis, we firstly consider a base problem in which we assume the exploration tasks have already been completed, and so our aim is to optimise our use of resources in the static fully observed problem. In the real world, we would not know the radio and physical environments after damage, and this creates a dynamic problem where damage must be discovered. Therefore, we extend to the dynamic problem in which the network repair problem considers both exploration and restoration. We then add a hop-count constraint for network quality in which the desired locations can talk to a sink within a hop count limit after the network is restored. For each new problem of the network repair, we have proposed different solutions (heuristics and/or complete algorithms) which prioritise different objectives. We evaluate our solutions based on simulation, assessing the quality of solutions (node cost, movement cost, computation time, and total restoration time) by varying the problem types and the capability of the agent that makes the repair. We show that the relative importance of the objectives influences the choice of algorithm, and different speeds of movement for the repairing agent have a significant impact on performance, and must be taken into account when selecting the algorithm. In particular, the node-based approaches are the best in the node cost, and the path-based approaches are the best in the mobility cost. For the total restoration time, the node-based approaches are the best with a fast moving agent while the path-based approaches are the best with a slow moving agent. For a medium speed moving agent, the total restoration time of the node-based approaches and that of the path-based approaches are almost balanced.
Resumo:
Mobile and wireless networks have long exploited mobility predictions, focused on predicting the future location of given users, to perform more efficient network resource management. In this paper, we present a new approach in which we provide predictions as a probability distribution of the likelihood of moving to a set of future locations. This approach provides wireless services a greater amount of knowledge and enables them to perform more effectively. We present a framework for the evaluation of this new type of predictor, and develop 2 new predictors, HEM and G-Stat. We evaluate our predictors accuracy in predicting future cells for mobile users, using two large geolocation data sets, from MDC [11], [12] and Crawdad [13]. We show that our predictors can successfully predict with as low as an average 2.2% inaccuracy in certain scenarios.