7 resultados para Natural susceptibility to erosion
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Osteoporosis is a complex skeletal disorder characterized by compromised bone strength. Variation in bone mineral density (BMD) is a contributing factor. The aim of this research as to select informative single nucleotide polymorphisms (SNPs) in potential candidate genes from loci suggestively linked to BMD variation for fine mapping. The gene regulated by oestrogen in breast cancer 1 (GREB1), located at 2p25.1, was selected. GREB1 transcription is initiated early in the oestrogen receptor alpha regulated pathway. There was significant association between GREB1_03 and BMD variation at the lumbar spine and femoral neck (FN) in the discovery cohort. Significant association was observed between GREB1_04 and FN BMD in the replication cohort. The development and differentiation enhancing factor 2, the integrin cytoplasmic domain associated protein 1 and A-disintegrin and metalloprotease 17 were selected due to their respective roles in cell mobility and adhesion. There was no linkage or association observed between the Chr2 cluster SNPs and BMD. Two factors in bone remodelling are the attraction of bone cell precursors and endocrine regulation of the process, primarily through the action of parathyroid hormone (PTH). The C-C chemokine receptor type 3 (CCR3) encodes a CC chemokine receptor expressed in osteoclast precursors. The PTH receptor type 1 (PTHR1) encodes a G-protein coupled receptor for PTH. Association was observed between CCR3 haplotypes and BMD variation at the FN. There was no linkage or association observed between PTHR1 SNPs and BMD variation. Population genetic studies with complex phenotypes endeavour to elucidate the traits genetic architecture. This study presents evidence of association between GREB1 and BMD variation and as such, introduces GREB1 as a novel gene target for osteoporosis genetics studies. It affirms that common genomic variants in PTHR1 are not associated with BMD variation in Caucasians and supports the evidence that CCR3 may be contributing to BMD variation
Resumo:
Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e.,the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.
Resumo:
Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life.
Resumo:
Countries across the world are being challenged to decarbonise their energy systems in response to diminishing fossil fuel reserves, rising GHG emissions and the dangerous threat of climate change. There has been a renewed interest in energy efficiency, renewable energy and low carbon energy as policy‐makers seek to identify and put in place the most robust sustainable energy system that can address this challenge. This thesis seeks to improve the evidence base underpinning energy policy decisions in Ireland with a particular focus on natural gas, which in 2011 grew to have a 30% share of Ireland’s TPER. Natural gas is used in all sectors of the Irish economy and is seen by many as a transition fuel to a low-carbon energy system; it is also a uniquely excellent source of data for many aspects of energy consumption. A detailed decomposition analysis of natural gas consumption in the residential sector quantifies many of the structural drives of change, with activity (R2 = 0.97) and intensity (R2 = 0.69) being the best explainers of changing gas demand. The 2002 residential building regulations are subject to an ex-post evaluation, which using empirical data finds a 44 ±9.5% shortfall in expected energy savings as well as a 13±1.6% level of non-compliance. A detailed energy demand model of the entire Irish energy system is presented together with scenario analysis of a large number of energy efficiency policies, which show an aggregate reduction in TFC of 8.9% compared to a reference scenario. The role for natural gas as a transition fuel over a long time horizon (2005-2050) is analysed using an energy systems model and a decomposition analysis, which shows the contribution of fuel switching to natural gas to be worth 12 percentage points of an overall 80% reduction in CO2 emissions. Finally, an analysis of the potential for CCS in Ireland finds gas CCS to be more robust than coal CCS for changes in fuel prices, capital costs and emissions reduction and the cost optimal location for a gas CCS plant in Ireland is found to be in Cork with sequestration in the depleted gas field of Kinsale.
Resumo:
Background: Obesity is the most important health challenge faced at a global level and represents a rapidly growing problem to the health of populations. Given the escalating global health problem of obesity and its co-morbidities, the need to re-appraise its management is more compelling than ever. The normalisation of obesity within our society and the acceptance of higher body weights have led to individuals being unaware of the reality of their weight status and gravity of this situation. Recognition of the problem is a key component of obesity management and it remains especially crucial to address this issue. A large amount of research has been undertaken on obesity however, limited research has been undertaken using the Health Belief Model. Aim: The aim of the research was to determine factors relating to motivation to change behaviour in individuals who perceive themselves to be overweight and investigate whether the constructs of the Health Belief Model help to explain motivation to change behaviour. Method: The research design was quantitative, correlational and cross-sectional. The design was guided by the Health Belief Model. Data Collection: Data were collected online using a multi-section and multi-item questionnaire, developed from a review of the theoretical and empirical research. Descriptive and inferential statistical analyses were employed to describe relationships between variables. Sample: A sample of 202 men and women who perceived themselves to be overweight participated in the research. Results: Following multivariate regression analysis, perceived barriers to weight loss and perceived benefits of weight loss were significant predictors of motivation to change behaviour. The perceived barriers to weight loss which were significant were psychological barriers to weight loss (p =<0.019) and environmental barriers to physical activity (p=<0.032).The greatest predictor of motivation to change behaviour was the perceived benefits of weight loss (p<0.001). Perceived susceptibility to obesity and perceived severity of obesity did not emerge as significant predictors in this model. Total variance explained by the model was 33.5%. Conclusion: Perceived barriers to weight loss and perceived benefits of weight loss are important determinants of motivation to change behaviour. The current study demonstrated the limited applicability of the Health Belief Model constructs to motivation to change behaviour, as not all core dimensions proved significant predictors of the dependant variable.
Resumo:
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Resumo:
The occurrence of OsHV-1, a herpes virus causing mass mortality in the Pacific oyster Crassostrea gigas was investigated with the aim to select individuals with different susceptibility to the infection. Naïve spat transferred to infected areas and juveniles currently being grown at those sites were analyzed using molecular and histology approaches. The survey period distinguishes itself by very warm temperatures reaching up to 3.5°C above the average. The virus was not detected in the virus free area although a spread of the disease could be expected due to high temperatures. Overall mortality, prevalence of infection and viral load was higher in spat confirming the higher susceptibility in early life stages. OsHV-1 and oyster mortality were detected in naïve spat after 15 days of cohabitation with infected animals. Although, infection was associated with mortality in spat, the high seawater temperatures could also be the direct cause of mortality at the warmest site. One stock of juveniles suffered an event of abnormal mortality that was significantly associated with OsHV-1 infection. Those animals were infected with a previously undescribed microvariant whereas the other stocks were infected with OsHV-1 μVar. Cell lesions due to the infection were observed by histology and true infections were corroborated by in situ hybridization. Survivors from the natural outbreak were exposed to OsHV-1 μVar by intramuscular injection and were compared to naïve animals. The survival rate in previously exposed animals was significantly higher than in naïve oysters. Results derived from this study allowed the selection of animals that might possess interesting characteristics for future analysis on OsHV-1 resistance.