4 resultados para Nano-structured surfaces
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Controlling the growth mechanism for nano-structures is one of the most critical topics in material science. In the past 10 years there has been intensive research worldwide in IIIN based nanowires for its many unique photonic and electrical properties at this scale. There are several advantages to nanostructuring III-N materials, including increased light extraction, increased device efficiency, reduction of efficiency droop, and reduction in crystallographic defect density. High defect densities that normally plague III-N materials and reduce the device efficiency are not an issue for nano-structured devices such as LEDs, due to the effective strain relaxation. Additionally regions of the light spectrum such as green and yellow, once found difficult to achieve in bulk planar LEDs, can be produced by manipulating the confinement and crystal facet growth directions of the active regions. A cheap and easily repeatable self-assembly nano-patterning technique at wafer scale was designed during this thesis for top down production of III-N nanowires. Through annealing under ammonia and N2 gas flow, the first reported dislocation defect bending was observed in III-N nanorods by in-situ transmission electron microscopy heating. By growing on these etched top down nanorods as a template, ultra-dense nanowires with apex tipped semi-polar tops were produced. The uniform spacing of 5nm between each wire is the highest reported space-filling factor at 98%. Finally by using these ultra-dense nanorods bridging the green gap of the light spectrum was possible, producing the first reported red, yellow, green light emission from a single nano-tip.
Resumo:
We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions >= 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.
Resumo:
Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.
Resumo:
Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future (opto-)electronic devices. Understanding the role played by the nature of the linking group and the chain length on the adsorption structures and electronic properties of these assemblies is vital to advance this technology. This Thesis is a study of such properties and contributes in particular to a microscopic understanding of induced changes in the work function of experimentally studied functionalized silicon surfaces. Using first-principles density functional theory (DFT), at the first step, we provide predictions for chemical trends in the work function of hydrogenated silicon (111) surfaces modified with various terminations. For nonpolar terminating atomic species such as F, Cl, Br, and I, the change in the work function is directly proportional to the amount of charge transferred from the surface, thus relating to the difference in electronegativity of the adsorbate and silicon atoms. The change is a monotonic function of coverage in this case, and the work function increases with increasing electronegativity. Polar species such as −TeH, −SeH, −SH, −OH, −NH2, −CH3, and −BH2 do not follow this trend due to the interaction of their dipole with the induced electric field at the surface. In this case, the magnitude and sign of the surface dipole moment need to be considered in addition to the bond dipole to generally describe the change in work function. Compared to hydrogenated surfaces, there is slight increase in the work function of H:Si(111)-XH, where X = Te, Se, and S, whereas reduction is observed for surfaces covered with −OH, −CH3, and −NH2. Next, we study the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si–(CH2)n–CH2 and H:Si–X–(CH2)n–CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)–Hexyl and (X)–Dodecyl functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0–3, n = 5–7, and n = 9–11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length. Later we continue by examining the work function tuning of H:Si(111) over a range of 1.73 eV through adsorption of alkyl monolayers with general formula -[Xhead-group]-(CnH2n)-[Xtail-group], X = O(H), S(H), NH(2). The work function is practically converged at 4 carbons (8 for oxygen), for head-group functionalization. For tail-group functionalization and with both head- and tail-groups, there is an odd-even effect in the behavior of the work function, with peak-to-peak amplitudes of up to 1.7 eV in the oscillations. This behavior is explained through the orientation of the terminal-group's dipole. The shift in the work function is largest for NH2-linked and smallest for SH-linked chains and is rationalized in terms of interface dipoles. Our study reveals that the choice of the head- and/or tail-groups effectively changes the impact of the alkyl chain length on the work function tuning using self-assembled monolayers and this is an important advance in utilizing hybrid functionalized Si surfaces. Bringing together the understanding gained from studying single type functionalization of H:Si(111) with different alkyl chains and bearing in mind how to utilize head-group, tail-group or both as well as monolayer coverage, in the final part of this Thesis we study functionalized H:Si(111) with binary SAMs. Aiming at enhancing work function adjustment together with SAM stability and coverage we choose a range of terminations and linker-chains denoted as –X–(Alkyl) with X = CH3, O(H), S(H), NH(2) and investigate the stability and work function of various binary components grafted onto H:Si(111) surface. Using binary functionalization with -[NH(2)/O(H)/S(H)]-[Hexyl/Dodecyl] we show that work function can be tuned within the interval of 3.65-4.94 eV and furthermore, enhance the SAM’s stability. Although direct Si-C grafted SAMs are less favourable compared to their counterparts with O, N or S linkage, regardless of the ratio, binary functionalized alkyl monolayers with X-alkyl (X = NH, O) is always more stable than single type alkyl functionalization with the same coverage. Our results indicate that it is possible to go beyond the optimum coverage of pure alkyl functionalized SAMs (50%) by adding a linker with the correct choice of the linker. This is very important since dense packed monolayers have fewer defects and deliver higher efficiency. Our results indicate that binary anchoring can modify the charge injection and therefore bond stability while preserving the interface electronic structure.